Skip to main content

Nanoelectronic-Based Detection for Biology and Medicine

  • Chapter
Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter is a review of the work in nanoelectronic detection of biological molecules and its applications in biology and medicine. About half of the chapter focuses on the methods employed to immobilize deoxyribonucleic acid (DNA) on solid substrates with particular focus on the electronic detection and characterization of DNA. Charge-transfer properties and theories are explained, as such electronic and electrical sensing of molecular-level interactions are very important in medical applications for rapid and cheap diagnosis.

A special tool called nanopore, which has been used extensively to characterize DNA, is then reviewed. A special distinction is made between the characteristics, capabilities, and impacts of the biological and the solid-state nanopores. Nanopores, when used in the ion current measurement setup, are used to measure the behavior of DNA as it traverses the nanopore. When the DNA traverses the pore, the blockage of the ion current is observed as a pulse. The statistical analysis of the pulses yields trends that are used to sort the DNA based on various properties. The nanopores are strong prototypes for biosensors, and have become a major experimental tool for investigating biophysical properties of double and single strands of DNA. The DNA sequence can potentially be determined by measuring how the forces on the DNA molecules, and the ion currents through the nanopore, change as the molecules pass through the nanopore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

atomic force microscopy

ALD:

atomic-layer deposition

APTMS:

3-aminopropyltrimethoxysilane

AT:

adenine–thymine

CD:

compact disc

DARPA:

Defense Advanced Research Projects Agency

DEP:

dielectrophoretic

DNA:

deoxyribonucleic acid

EBL:

electron-beam lithography

FESEM:

field-emission scanning electron microscope

HOMO:

highest occupied molecular orbital

LEEPS:

low-energy electron point source

LUMO:

lowest unoccupied molecular orbital

NNI:

national nanotechnology initiative

NPC:

nanopore channel

PCR:

polymerase chain reaction

PDITC:

1,4-phenylene diisothiocyanate

RNA:

ribonucleic acid

SAM:

self-assembled monolayer

SAM:

software asset management

SOI:

silicon-on-insulator

STM:

scanning tunneling microscope

TEM:

transmission electron microscope

UV:

ultraviolet

bp:

base pair

ssDNA:

single-strand DNA

References

  1. K.S. Kwok, J.C. Ellenbogen: Moletronics: future electronics, Mater. Today 5, 28–37 (2002)

    Article  Google Scholar 

  2. G. Maubach, W. Fritzsche: Precise positioning of individual DNA structures in electrode gaps by self-organization onto guiding microstructures, Nano Lett. 4(4), 607–611 (2004)

    Article  Google Scholar 

  3. A.J. Storm: Single Molecule Experiments on DNA with Novel Silicon Nanostructures. Ph.D. Thesis (Delft University Press, Delf 2004)

    Google Scholar 

  4. T.T. Nikiforov, Y.H. Rogers: The use of 96-well polystyrene plates for DNA hybridization-based assays: An evaluation of different approaches to oligonucleotide immobilization, Anal. Biochem. 227(1), 201–209 (1995)

    Article  Google Scholar 

  5. L. Zheng, J.P. Brody, P.J. Burke: Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly, Biosens. Bioelectron. 20, 606–619 (2004)

    Article  Google Scholar 

  6. B. Xu, P. Zhang, X. Li, N. Tao: Direct conductance measurement of single DNA molecules in aqueous solution, Nano Lett. 4(6), 1105–1108 (2004)

    Article  Google Scholar 

  7. B.J. Taft, M. OʼKeefe, J.T. Fourkas, S.O. Kelley: Engineering DNA-electrode connectivities: manipulation of linker length and structure, Anal. Chim. Acta 496(1), 81–91 (2003)

    Article  Google Scholar 

  8. J. Wang: Nanoparticle-based electrochemical DNA detection, Anal. Chim. Acta 500, 247–257 (2003)

    Article  Google Scholar 

  9. D.-S. Kim, Y.-T. Jeong, H.-J. Park, J.-K. Shin, P. Choi, J.-H. Lee, G. Lim: An FET-type charge sensor for highly sensitive detection of DNA sequence, Biosens. Bioelectron. 20(1), 69–74 (2004)

    Article  Google Scholar 

  10. M. Gabig-Ciminska: Developing nucleic acid-based electrical detection systems, Microb. Cell Fact. 5(1), 9 (2006)

    Google Scholar 

  11. J.B. Lamture, K.L. Beattie, B.E. Burke, M.D. Eggers, D.J. Ehrlich, R. Fowler, M.A. Hollis, B.B. Kosicki, R.K. Reich, S.R. Smith: Direct detection of nucleic acid hybridization on the surface of a charge coupled device, Nucl. Acids Res. 22(11), 2121–2125 (1994)

    Article  Google Scholar 

  12. M. Bras, V. Dugas, F. Bessueille, J.P. Cloarec, J.R. Martin, M. Cabrera, J.P. Chauvet, E. Souteyrand, M. Garrigues: Optimisation of a silicon/silicon dioxide substrate for a fluorescence DNA microarray, Biosens. Bioelectron. 20(4), 796–805 (2004)

    Article  Google Scholar 

  13. L. Cai, H. Tabata, T. Kawai: Self-assembled DNA networks and their electrical conductivity, Appl. Phys. Lett. 77(19), 3105–3106 (2000)

    Google Scholar 

  14. E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph: DNA-templated assembly and electrode attachment of a conducting silver wire, Nature 391, 775–778 (1998)

    Article  Google Scholar 

  15. A. Macanovic, C. Marquette, C. Polychronakos, M.F. Lawrence: Impedance-based detection of DNA sequences using a silicon transducer with PNA as the probe layer, Nucl. Acids Res. 32(2), e20 (2004)

    Google Scholar 

  16. M. Manning, S. Harvey, P. Galvin, G. Redmond: A versatile multi-platform biochip surface attachment chemistry, Mater. Sci. Eng. C 23, 347–351 (2003)

    Article  Google Scholar 

  17. C. Adessi, S. Walch, M.P. Anantram: Environment and structure influence on DNA conduction, Phys. Rev. B: Condens. Matter 67, 081405.1–081405.4 (2003)

    Article  Google Scholar 

  18. R.G. Endres, D.L. Cox, R.R.P. Singh: Colloquium: the quest for high-conductance DNA, Rev. Mod. Phys. 76, 195–214 (2004)

    Google Scholar 

  19. M.A. Young, G. Ravishanker, D.L. Beveridge: A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation, Biophys. J. 73, 2313–2336 (1997)

    Google Scholar 

  20. D.D. Eley, D.I. Spivey: Semiconductivity of organic substances, Trans. Faraday Soc. 58, 411–415 (1962)

    Article  Google Scholar 

  21. R.S. Snart: The electrical properties and stability of DNA to UV radiation and aromatic hydrocarbons, Biopolymers 12, 1493–1503 (1973)

    Google Scholar 

  22. C.J. Murphy, M.R. Arkin, Y. Jenkins, N.D. Ghatlia, S.H. Bossmann, N.J. Turro, J.K. Barton: Long range photoinduced electron transfer through a DNA helix, Science 262, 1025–1029 (1993)

    Google Scholar 

  23. A.M. Brun, A. Harriman: Energy- and electron-transfer processes involving palladium porphyrins bound to DNA, J. Am. Chem. Soc. 116, 10383–93 (1994)

    Article  Google Scholar 

  24. D. Ly, L. Sanii, G.B. Schuster: Mechanism of charge transport in DNA: internally-linked anthraquinone conjugates support phonon-assisted polaron hopping, J. Am. Chem. Soc. 121, 9400–9410 (1999)

    Article  Google Scholar 

  25. B. Giese, S. Wessely: The influence of mismatches on long-distance charge transport through DNA, Angew. Chem. Int. Ed. 39(19), 3490–3491 (2000)

    Google Scholar 

  26. H.W. Fink, C. Schönenberger: Electrical conduction through DNA molecules, Nature 398, 407–410 (1999)

    Article  Google Scholar 

  27. D. Porath, A. Bezryadin, S. de Vries, C. Dekker: Direct measurement of electrical transport through DNA molecules, Nature 403, 635–638 (2000)

    Article  Google Scholar 

  28. P.J. de Pablo, F. Moreno-Herrero, J. Colchero, J.G. Herrero, P. Herrero, A.M. Baró, P. Ordejón, J.M. Soler, E. Artacho: Absence of DC-conductivity in λ-DNA, Phys. Rev. Lett. 85, 4992–4995 (2000)

    Article  Google Scholar 

  29. A.Y. Kasumov, M. Kociak, S. Guéron, B. Reulet, V.T. Volkov, D.V. Klinov, H. Bouchiat: Proximity-induced superconductivity in DNA, Science 291(5502), 280–282 (2001)

    Google Scholar 

  30. M. Di Ventra, M. Zwolak: DNA electronics. In: Encyclopedia of Nanoscience and Nanotechnology, ed. by H.S. Nalwa (American Scientific Publishers, Los Angeles 2004)

    Google Scholar 

  31. K.-H. Yoo, D.H. Ha, J.-O. Lee, J.W. Park, J. Kim, J.J. Kim, H.-Y. Lee, T. Kawai, H.Y. Choi: Electrical conduction through poly(dA)-poly(dT) and poly(dG)-poly(dC) DNA molecules, Phys. Rev. Lett. 87(19), 198102-1–198102-4 (2001)

    Google Scholar 

  32. A.J. Storm, J. van Noort, S. de Vries, C. Dekker: Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale, Appl. Phys. Lett. 79(23), 3881–3883 (2001)

    Article  Google Scholar 

  33. H.-Y. Lee, H. Tanaka, Y. Otsuka, K.-H. Yoo, J.-O. Lee, T. Kawai: Control of electrical conduction in DNA using oxygen hole doping, Appl. Phys. Lett. 80(9), 1670–1672 (2002)

    Google Scholar 

  34. C. Gómez-Navarro, F. Moreno-Herrero, P.J. de Pablo, J. Colchero, J. Gómez-Herrero, A.M. Baró: Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior, Proc. Natl. Acad. Sci. USA 99(13), 8484–8487 (2002)

    Article  Google Scholar 

  35. B. Xu, P. Zhang, X. Li, N. Tao: Direct conductance measurement of single DNA molecules in aqueous solution, Nano Lett. 4(6), 1105–1108 (2004)

    Article  Google Scholar 

  36. C. Nogues, S.R. Cohen, S.S. Daube, R. Naaman: Electrical properties of short DNA oligomers characterized by conducting atomic force microscopy, Phys. Chem. Chem. Phys. 6(18), 4459–4466 (2004)

    Article  Google Scholar 

  37. S.M. Iqbal, G. Balasundaram, S. Ghosh, D.E. Bergstrom, R. Bashir: DC electrical characterization of ds-DNA in nano-gap junctions, Appl. Phys. Lett. 86(15), 153901–3 (2005)

    Google Scholar 

  38. Y. Otsuka, H. Lee, J. Gu, J. Lee, K.-H. Yoo, H. Tanaka, H. Tabata, T. Kawai: Influence of humidity on the electrical conductivity of synthesized DNA film on nanogap electrode, Jpn. J. Appl. Phys. 41(2A), 891–894 (2002), part 1

    Article  Google Scholar 

  39. A.K. Mahapatro, K.J. Jeong, G.U. Lee, D.B. Janes: Sequence specific electronic conduction through polyion-stabilized double-stranded DNA in nanoscale break junctions, Nanotechnology 18, 195202 (2007)

    Google Scholar 

  40. J. Jortner, M. Bixon, T. Langenbacher, M.E. Michel-Beyerle: Charge transfer and transport in DNA, Proc. Natl. Acad. Sci. USA 95, 12759–12765 (1998)

    Article  Google Scholar 

  41. Z.G. Yu, X. Song: Variable range hopping and electrical conductivity along the DNA double helix, Phys. Rev. Lett. 86, 6018–6021 (2001)

    Article  Google Scholar 

  42. J. Yi: Conduction of DNA molecules: a charge-ladder model, Phys. Rev. B: Condens. Matter 68, 193103-1–193103-4 (2003)

    Google Scholar 

  43. Y. Zhu, C.-C. Kaun, H. Guo: Contact, charging, and disorder effects on charge transport through a model DNA molecule, Phys. Rev. B: Condens. Matter 69, 245112-1–245112-7 (2004)

    Google Scholar 

  44. N.J. Turro, J.K. Barton: Paradigms, supermolecules, electron transfer and chemistry at a distance. Whatʼs the problem? The science or the paradigm?, J. Biol. Inorg. Chem. 3(2), 201–209 (1998)

    Article  Google Scholar 

  45. D.N. Beratan, S. Priyadarshy, S.M. Risser: DNA: insulator or wire?, Chem. Biol. 4(1), 3–8 (1997)

    Article  Google Scholar 

  46. Y.A. Berlin, A.L. Burin, M.A. Ratner: On the long-range charge transfer in DNA, J. Phys. Chem. A 104(3), 443–445 (2000)

    Google Scholar 

  47. M. Zwolak, M.D. Ventra: Electronic signature of DNA nucleotides via transverse transport, Nano Lett. 5(3), 421–424 (2005)

    Article  Google Scholar 

  48. J.J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer: Characterization of individual polynucleotide molecules using a membrane channel, Proc. Natl. Acad. Sci. USA 93, 13770–13773 (1996)

    Google Scholar 

  49. L.Q. Gu, O. Braha, S. Conlan, S. Cheley, H. Bayley: Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter, Nature 398, 686–690 (1999)

    Article  Google Scholar 

  50. A. Meller, L. Nivon, E. Brandin, J. Golovchenko, D. Branton: Rapid nanopore discrimination between single polynucleotide molecules, Proc. Natl. Acad. Sci. USA 97, 1079–1084 (2000)

    Article  Google Scholar 

  51. S. Howorka, S. Cheley, H. Bayley: Sequence-specific detection of individual DNA strands using engineered nanopores, Nat. Biotechnol. 19(7), 636–639 (2001)

    Article  Google Scholar 

  52. Y. Astier, O. Braha, H. Bayley: Toward single molecule DNA sequencing: direct identification of ribonucleoside and deoxyribonucleoside 5′-monophosphates by using an engineered protein nanopore equipped with a molecular adapter, J. Am. Chem. Soc. 128(5), 1705–1710 (2006)

    Article  Google Scholar 

  53. J.-H. Choy, S.-Y. Kwak, J.-S. Park, Y.-J. Jeong, J. Portier: Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide, J. Am. Chem. Soc. 121(6), 1399–1400 (1999)

    Article  Google Scholar 

  54. K.S. Ralls, R.A. Buhrman, R.C. Tiberiom: Fabrication of thin-film metal nanobridges, Appl. Phys. Lett. 55(23), 2459–2461 (1989)

    Google Scholar 

  55. N.N. Gribov, S.J.C.H. Theeuwen, J. Caro, S. Radelaar: A new fabrication process for metallic point contacts, Microelectron. Eng. 35, 317–320 (1997)

    Article  Google Scholar 

  56. J. Li, D. Stein, C. Mcmullan, D. Branton, M.J. Aziz, J.A. Golovchenko: Ion-beam sculpting at nanometre length scales, Nature 412, 166–169 (2001)

    Google Scholar 

  57. J. Li, M. Gershow, D. Stein, E. Brandin, J.A. Golovchenko: DNA molecules and configurations in a solid-state nanopore microscope, Nat. Mater. 2, 611–615 (2003)

    Article  Google Scholar 

  58. H. Chang, F. Kosari, G. Andreadakis, M.A. Alam, G. Vasmatzis, R. Bashir: DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels, Nano Lett. 4(8), 1551–1556 (2004)

    Article  Google Scholar 

  59. R.M.M. Smeets, U.F. Keyser, D. Krapf, M.-Y. Wu, N.H. Dekker, C. Dekker: Salt dependence of ion transport and DNA translocation through solid-state nanopores, Nano Lett. 6(1), 89–95 (2006)

    Article  Google Scholar 

  60. P. Chen, T. Mitsui, D.B. Farmer, J. Golovchenko, R.G. Gordon, D. Branton: Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores, Nano Lett. 4, 133–1337 (2004)

    Article  Google Scholar 

  61. A.J. Storm, J.H. Chen, X.S. Ling, H.W. Zandbergen, C. Dekker: Electron-beam-induced deformations of SiO2 nanostructures, J. Appl. Phys. 98, 014307-1–014307-8 (2005)

    Google Scholar 

  62. C. Ho, R. Qiao, J.B. Heng, A. Chatterjee, R.J. Timp, N.R. Aluru, G. Timp: Electrolytic transport through a synthetic nanometer-diameter pore, Proc. Natl. Acad. Sci. USA 102(30), 10445–10450 (2005)

    Article  Google Scholar 

  63. P. Chen, J. Gu, E. Brandin, Y.-R. Kim, Q. Wang, D. Branton: Probing single DNA molecule transport using fabricated nanopores, Nano Lett. 4(11), 2293–2298 (2004)

    Article  Google Scholar 

  64. D. Fologea, J. Uplinger, B. Thomas, D.S. McNabb, J. Li: Slowing DNA translocation in a solid-state nanopore, Nano Lett. 5(9), 1734–1737 (2005)

    Article  Google Scholar 

  65. D. Fologea, M. Gershow, B. Ledden, D.S. McNabb, J.A. Golovchenko, J. Li: Detecting single stranded DNA with a solid state nanopore, Nano Lett. 5(10), 1905–1909 (2005)

    Article  Google Scholar 

  66. M.-Y. Wu, D. Krapf, M. Zandbergen, H. Zandbergena, P.E. Batson: Formation of nanopores in a SiN/SiO2 membrane with an electron beam, Appl. Phys. Lett. 87, 113106-1–113106-3 (2005)

    Google Scholar 

  67. J.B. Heng, A. Aksimentiev, C. Ho, P. Marks, Y.V. Grinkova, S. Sligar, K. Schulten, G. Timp: Stretching DNA using the electric field in a synthetic nanopore, Nano Lett. 5(10), 1883–1888 (2005)

    Article  Google Scholar 

  68. J.B. Heng, A. Aksimentiev, C. Ho, P. Marks, Y.V. Grinkova, S. Sligar, K. Schulten, G. Timp: The electromechanics of DNA in a synthetic nanopore, Biophys. J. 90, 1098–1106 (2006)

    Article  Google Scholar 

  69. J.B. Heng, C. Ho, T. Kim, R. Timp, A. Aksimentiev, Y.V. Grinkova, S. Sligar, K. Schulten, G. Timp: Sizing DNA using a nanometer-diameter pore, Biophys. J. 87, 2905–2911 (2004)

    Article  Google Scholar 

  70. A. Aksimentiev, J.B. Heng, G. Timp, K. Schulten: Microscopic kinetics of DNA translocation through synthetic nanopores, Biophys. J. 87, 2086–2097 (2004)

    Article  Google Scholar 

  71. D. Krapf, M.-Y. Wu, R.M.M. Smeets, H.W. Zandbergen, C. Dekker, S.G. Lemay: Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm, Nano Lett. 6(1), 105–109 (2006)

    Article  Google Scholar 

  72. H. Chang, S.M. Iqbal, E.A. Stach, A.H. King, N.J. Zaluzec, R. Bashir: Fabrication and characterization of solid-state nanopores using a field emission scanning electron microscope, Appl. Phys. Lett. 88, 103109-1–103109-3 (2006)

    Google Scholar 

  73. G.S. Manning: Molecular theory of polyelectrolyte solutions with applications to electrostatic properties of polynucleotides, Q. Rev. Biophys. 11, 179–246 (1978)

    Google Scholar 

  74. U.F. Keyser, B.N. Koeleman, S. van Dorp, D. Krapf, R.M.M. Smeets, S.G. Lemay, N.H. Dekker, C. Dekker: Direct force measurements on DNA in a solid-state nanopore, Nat. Phys. 2(7), 473–477 (2006)

    Article  Google Scholar 

  75. U.F. Keyser, J. van der Does, C. Dekker, N.H. Dekker: Optical tweezers for force measurements on DNA in nanopores, Rev. Sci. Instrum. 77, 105105-1–105105-9 (2006)

    Google Scholar 

  76. D. Krapf, B.M. Quinn, M.-Y. Wu, H.W. Zandbergen, C. Dekker, S.G. Lemay: Experimental observation of nonlinear ionic transport at the nanometer scale, Nano Lett. 6(11), 2531–2535 (2006)

    Article  Google Scholar 

  77. S.M. Iqbal, D. Akin, R. Bashir: Solid-state nanopore channels with DNA selectivity, Nat. Nanotechnol. 2, 243–248 (2007)

    Article  Google Scholar 

  78. A.J. Storm, J.H. Chen, H.W. Zandbergen, C. Dekker: Translocation of double-strand DNA through a silicon oxide nanopore, Phys. Rev. E 71, 051903-1–051903-10 (2005)

    Google Scholar 

  79. E. Pennisi: HUMAN GENOME: Reaching their goal early, sequencing labs celebrate, Science 300(5618), 409–09 (2003)

    Google Scholar 

  80. R.F. Service: GENE SEQUENCING: The race for the $ 1000 Genome, Science 311(5767), 1544–1546 (2006)

    Article  Google Scholar 

  81. C. Dekker: Solid-state nanopores, Nat. Nanotechnol. 2, 1–7 (2007)

    Article  Google Scholar 

  82. K. Healy: Nanopore-based single-molecule DNA analysis, Nanomedicine 2(4), 459–481 (2007)

    Article  Google Scholar 

  83. M. Wanunu, A. Meller: Single-molecule analysis of nucleic acids and DNA-protein interactions using nanopores. In: Single-Molecule Techniques: A Laboratory Manual, ed. by P. Selvin, T.J. Ha (Cold Spring Harbor Laboratory Press, Cold Spring Harbor 2007) pp. 395–420

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samir M. Iqbal Prof or Rashid Bashir PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iqbal, S.M., Bashir, R. (2009). Nanoelectronic-Based Detection for Biology and Medicine. In: Nof, S. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78831-7_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78831-7_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78830-0

  • Online ISBN: 978-3-540-78831-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics