Skip to main content

DLIGHT – Lateral Gene Transfer Detection Using Pairwise Evolutionary Distances in a Statistical Framework

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4955))

Abstract

This paper presents an algorithm to detect lateral gene transfer (LGT) on the basis of pairwise evolutionary distances. The prediction is made from a likelihood ratio derived from hypotheses of LGT versus no LGT, using multivariate normal theory. In contrast to approaches based on explicit phylogenetic LGT detection, it avoids the high computational cost and pitfalls associated with gene tree inference, while maintaining the high level of characterization obtainable from such methods (species involved in LGT, direction, distance to the LGT event in the past). We validate the algorithm empirically using both simulation and real data, and compare its predictions with standard methods and other studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Philippe, H., Douady, C.J.: Horizontal gene transfer and phylogenetics. Curr. Opin. Microbiol. 6, 498–505 (2003)

    Article  Google Scholar 

  2. Lawrence, J.G., Ochman, H.: Reconciling the many faces of lateral gene transfer. Trends Microbiol. 10, 1–4 (2002)

    Article  Google Scholar 

  3. Lawrence, J.G., Ochman, H.: Amelioration of bacterial genomes: rates of change and exchange. J. Mol. Evol. 44, 383–397 (1997)

    Article  Google Scholar 

  4. Lawrence, J.G., Ochman, H.: Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. U S A 95, 9413–9417 (1998)

    Article  Google Scholar 

  5. Karlin, S.: Global dinucleotide signatures and analysis of genomic heterogeneity. Curr. Opin. Microbiol. 1, 598–610 (1998)

    Article  Google Scholar 

  6. Moszer, I., Rocha, E.P., Danchin, A.: Codon usage and lateral gene transfer in Bacillus subtilis. Curr. Opin. Microbiol. 2, 524–528 (1999)

    Article  Google Scholar 

  7. Mrazek, J., Karlin, S.: Detecting alien genes in bacterial genomes. Ann. N. Y. Acad. Sci. 870, 314–329 (1999)

    Article  Google Scholar 

  8. Medigue, C., Rouxel, T., Vigier, P., Henaut, A., Danchin, A.: Evidence for horizontal gene transfer in Escherichia coli speciation. J. Mol. Biol. 222, 851–856 (1991) (Comparative Study)

    Article  Google Scholar 

  9. Hamady, M., Betterton, M.D., Knight, R.: Using the nucleotide substitution rate matrix to detect horizontal gene transfer. BMC Bioinformatics 7, 476 (2006)

    Article  Google Scholar 

  10. Beiko, R.G., Harlow, T.J., Ragan, M.A.: Highways of gene sharing in prokaryotes. Proc. Natl. Acad. Sci. U S A 102, 14332–14337 (2005) (Comparative Study)

    Article  Google Scholar 

  11. Gophna, U., Ron, E.Z., Graur, D.: Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312, 151–163 (2003)

    Article  Google Scholar 

  12. Lawrence, J.G., Hartl, D.L.: Inference of horizontal genetic transfer from molecular data: an approach using the bootstrap. Genetics 131, 753–760 (1992)

    Google Scholar 

  13. Clarke, G.D.P., Beiko, R.G., Ragan, M.A., Charlebois, R.L.: Inferring genome trees by using a filter to eliminate phylogenetically discordant sequences and a distance matrix based on mean normalized BLASTP scores. J. Bacteriol. 184, 2072–2080 (2002)

    Article  Google Scholar 

  14. Koski, L.B., Golding, G.B.: The closest BLAST hit is often not the nearest neighbor. J. Mol. Evol. 52, 540–542 (2001)

    Google Scholar 

  15. Pupko, T., Huchon, D., Cao, Y., Okada, N., Hasegawa, M.: Combining multiple data sets in a likelihood analysis: which models are the best?. Mol. Biol. Evol. 19, 2294–2307 (2002)

    Google Scholar 

  16. Susko, E.: Confidence regions and hypothesis tests for topologies using generalized least squares. Mol. Biol. Evol. 20, 862–868 (2003)

    Article  Google Scholar 

  17. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates Inc., Sunderland (2004)

    Google Scholar 

  18. Schneider, A., Cannarozzi, G.M., Gonnet, G.H.: Empirical codon substitution matrix. BMC Bioinformatics 6 (2005)

    Google Scholar 

  19. Kunin, V., Ouzounis, C.A.: The balance of driving forces during genome evolution in prokaryotes. Genome Res. 13, 1589–1594 (2003)

    Article  Google Scholar 

  20. Dessimoz, C., Cannarozzi, G., Gil, M., Margadant, D., Roth, A., Schneider, A., Gonnet, G.: OMA, a comprehensive, automated project for the identification of orthologs from complete genome data: Introduction and first achievements. In: McLysaght, A., Huson, D.H. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3678, pp. 61–72. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Lawrence, J.G., Hendrickson, H.: Lateral gene transfer: when will adolescence end? Mol. Microbiol. 50, 739–749 (2003)

    Article  Google Scholar 

  22. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A., Gasteiger, E., Martin, M.J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider, M.: The swiss-prot protein knowledgebase and its supplement trembl in 2003. Nucleic Acids Res. 31, 365–370 (2003)

    Article  Google Scholar 

  23. Lerat, E., Daubin, V., Ochman, H., Moran, N.A.: Evolutionary origins of genomic repertoires in bacteria. PLoS Biol. 3, e130 (2005)

    Article  Google Scholar 

  24. Ge, F., Wang, L.S., Kim, J.: The cobweb of life revealed by genome-scale estimates of horizontal gene transfer. PLoS Biol. 3, e316 (2005)

    Article  Google Scholar 

  25. Dagan, T., Martin, W.: Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc. Natl. Acad. Sci. USA 104, 870–875 (2007)

    Article  Google Scholar 

  26. Ragan, M.A.: On surrogate methods for detecting lateral gene transfer. FEMS Microbiol. Lett. 201, 187–191 (2001)

    Article  Google Scholar 

  27. Zhaxybayeva, O., Gogarten, J.P., Charlebois, R.L., Doolittle, W.F., Papke, R.T.: Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res. 16, 1099–1108 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martin Vingron Limsoon Wong

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dessimoz, C., Margadant, D., Gonnet, G.H. (2008). DLIGHT – Lateral Gene Transfer Detection Using Pairwise Evolutionary Distances in a Statistical Framework. In: Vingron, M., Wong, L. (eds) Research in Computational Molecular Biology. RECOMB 2008. Lecture Notes in Computer Science(), vol 4955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78839-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78839-3_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78838-6

  • Online ISBN: 978-3-540-78839-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics