Skip to main content

Deterministic Compartmental Models: Extensions of Basic Models

  • Chapter
Mathematical Epidemiology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 1945))

The basic compartmental models for disease transmission are extended to include three separate biological features. The first such feature is vertical transmission of disease, for which two ordinary differential equation models (SIR and SEIR) are formulated and analyzed. In particular, vertical transmission is shown to increase the basic reproduction number. Immigration of infective individuals is considered as a second feature, and the resulting model has a unique endemic equilibrium (with no disease-free state). An illustration is provided that includes screening and isolating infectives to reduce the spread of disease. A constant period of temporary immunity is introduced in an SIRS model as the third feature. This results in an integrodifferential equation for the fraction of infectives. Analysis shows that, for some parameter values, Hopf bifurcation can give rise to periodic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, L.J.S.: An introduction to stochastic epidemic models. Chapter 3 of Mathematical Epidemiology (this volume)

    Google Scholar 

  2. Brauer, F.: An introduction to compartmental models in epidemiology. Chapter 2 of Mathematical Epidemiology (this volume)

    Google Scholar 

  3. Brauer, F. and van den Driessche, P.: Models for transmission of disease with immigration of infectives. Math. Biosci. 171, 143–154 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Busenberg, S. and Cooke, K.: Vertically Transmitted Diseases. Biomath. 23, Springer, Berlin Heidelberg New York (1993)

    Google Scholar 

  5. Capasso, V.: Mathematical Structures of Epidemic Systems. Lect. Notes Biomath. 97, Springer, Berlin Heidelberg New York (1993)

    MATH  Google Scholar 

  6. Diekmann, O. and Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation, Wiley (2000)

    Google Scholar 

  7. Gani, J. Yakowitz, S. and Blount, M.: The spread and quarantine of HIV infection in a prison system. SIAM J. Appl. Math. 57, 1510–1530 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hart, C.A.: Microterrors. Firefly Books. Axis (2004)

    Google Scholar 

  9. Hale, J.K. and Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, Berlin Heidelberg New York(1993)

    MATH  Google Scholar 

  10. Hethcote, H.W., and Levin, S.A.: Periodicity in epidemiological models. In: Levin, S.A., Hallam, T.G., Gross, L.J. (eds) Applied Mathematical Ecology, Biomath. Texts. 18, Springer, Berlin Heidelberg New York 193–211 (1989)

    Google Scholar 

  11. Hethcote, H.W., Stech, H.W., and van den Driessche, P.: Non-linear oscillations in epidemic models. SIAM J. Appl. Math. 40, 1–9 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jeffries, C., Klee, V., and van den Driessche, P.: When is a matrix sign stable? Can. J. Math. 29, 315–326 (1977)

    MATH  Google Scholar 

  13. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic (1993)

    Google Scholar 

  14. Li, M.Y., and Muldowney, J.S.: A geometric approach to global- stability problems. SIAM. J. Math. Anal. 27, 1070–1083 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Li, M.Y., Smith, H.L., and Wang, L.: Global dynamics of an SEIR epidemic model with vertical transmission. SIAM. J. Appl. Math. 62, 58–69 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. van den Driessche, P., and Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Bios. 180, 29–48 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van den Driessche, P. (2008). Deterministic Compartmental Models: Extensions of Basic Models. In: Brauer, F., van den Driessche, P., Wu, J. (eds) Mathematical Epidemiology. Lecture Notes in Mathematics, vol 1945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78911-6_5

Download citation

Publish with us

Policies and ethics