Skip to main content

Cough Sensors. II. Transient Receptor Potential Membrane Receptors on Cough Sensors

  • Chapter
Pharmacology and Therapeutics of Cough

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 187))

Abstract

The transient receptor potential (TRP) family of channels is represented by at least six members in primary sensory neurons. These include the TRP vanilloid subtypes 1 (TRPV1), 2, 3, and 4, the cold and menthol receptor TRPM8, and TRPA1. Much interest has been directed to the study of the TRPV1, because capsaicin has been instrumental in discovering the unique role of a subset of primary sensory neurons in causing nociceptive responses, in activating reflex pathways including cough, and in producing neurogenic inflammation. TRPV1 is now regarded as an integrator of diverse sensory modalities because it undergoes marked plasticity and sensitization through a variety of mechanisms, including activation of G-protein-coupled or tyrosine kinase receptors. Evidence in experimental animals and in patients with airway diseases indicates a marked hypersensitivity to cough induced by TRPV1 agonists. Recent studies with newly developed high-affinity and selective TRPV1 antagonists have revealed that TRPV1 inhibition reduces cough induced by citric acid or antigen challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agopyan N, Bhatti T, Yu S, et al. (2003) Vanilloid receptor activation by 2- and 10-microm particles induces responses leading to apoptosis in human airway epithelial cells. Toxicol Appl Pharmacol 192:21–35

    Article  PubMed  CAS  Google Scholar 

  • Amadesi S, Moreau J, Tognetto M, et al. (2001) NK1 receptor stimulation causes contraction and inositol phosphate increase in medium-size human isolated bronchi. Am J Respir Crit Care Med 163:1206–1211

    PubMed  CAS  Google Scholar 

  • Amadesi S, Nie J, Vergnolle N, et al. (2004) Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J Neurosci 24:4300–4312

    Article  PubMed  CAS  Google Scholar 

  • Andersson DA, Gentry C, Moss S, et al. (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci 28:2485–2494

    Article  PubMed  CAS  Google Scholar 

  • Bang S, Kim KY, Yoo S, et al. (2007) Transient receptor potential A1 mediates acetaldehyde-evoked pain sensation. Eur J Neurosci 26:2516–2523

    Article  PubMed  Google Scholar 

  • Basu S, Srivastava P (2005) Immunological role of neuronal receptor vanilloid receptor 1 expressed on dendritic cells. Proc Natl Acad Sci USA 102:5120–125

    Article  PubMed  CAS  Google Scholar 

  • Bautista DM, Jordt SE, Nikai T, et al. (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282

    Article  PubMed  CAS  Google Scholar 

  • Benedetti A, Comporti M, Esterbauer H (1980) Identification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochim Biophys Acta 620:281–296

    PubMed  CAS  Google Scholar 

  • Bevan S, Geppetti P (1994) Protons: Small stimulants of capsaicin-sensitive sensory nerves. Trends Neurosci 17:509–512

    Article  PubMed  CAS  Google Scholar 

  • Bevan S, Winter J (1995) Nerve growth factor (NGF) differentially regulates the chemosensitivity of adult rat cultured sensory neurons. J Neurosci 15:4918–4926

    PubMed  CAS  Google Scholar 

  • Bhattacharya A, Scott BP, Nasser N, et al. (2007) Pharmacology and antitussive efficacy of 4-(3-trifluoromethyl-pyridin-2-yl)-piperazine-1-carboxylic acid (5-trifluoromethyl-pyridin-2-yl)-amide (JNJ17203212), a transient receptor potential vanilloid 1 antagonist in guinea pigs. J Pharmacol Exp Ther 323:665–674

    Article  PubMed  CAS  Google Scholar 

  • Bhave G, Zhu W, Wang H, et al. (2002) cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron 35:721–731

    Article  PubMed  CAS  Google Scholar 

  • Birder LA, Kanai AJ, de Groat WC, et al. (2001) Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc Natl Acad Sci USA 98:13396–13401

    Article  PubMed  CAS  Google Scholar 

  • Birder LA, Nakamura Y, Kiss S, et al. (2002) Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 5:856–860

    Article  PubMed  CAS  Google Scholar 

  • Canning BJ, Farmer DG, Mori N (2006) Mechanistic studies of acid-evoked coughing in anesthetized guinea pigs. Am J Physiol Regul Integr Comp Physiol 291:R454–R463

    PubMed  CAS  Google Scholar 

  • Carr MJ, Kollarik M, Meeker SN, et al. (2003) A role for TRPV1 in bradykinin-induced excitationof vagal airway afferent nerve terminals. J Pharmacol Exp Ther 304:1275–1279

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, et al. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  • Chang AB, Gibson PG, Ardill J, et al. (2007) Calcitonin gene-related peptide relates to cough sensitivity in children with chronic cough. Eur Respir J 30:66–72

    Article  PubMed  CAS  Google Scholar 

  • Chuang HH, Prescott ED, Kong H, et al. (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962

    Article  PubMed  CAS  Google Scholar 

  • Chung KF (2007) Chronic cough: future directions in chronic cough: Mechanisms and antitussives. Chron Respir Dis 4:159–165

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  PubMed  CAS  Google Scholar 

  • Dai Y, Wang S, Tominaga M, et al. (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117:1979–1987

    Article  PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Aldini G, Carini M, et al. (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10:389–406

    Article  PubMed  CAS  Google Scholar 

  • Davis JB, Gray J, Gunthorpe MJ, et al. (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405:183–187

    Article  PubMed  CAS  Google Scholar 

  • De Petrocellis L, Harrison S, Bisogno T, et al. (2001) The vanilloid receptor (VR1)-mediated effects of anandamide are potently enhanced by the cAMP-dependent protein kinase. J Neu-rochem 77:1660–1663

    Google Scholar 

  • Dicpinigaitis PV, Alva RV (2005) Safety of capsaicin cough challenge testing. Chest 128:196–202

    Article  PubMed  Google Scholar 

  • Dietrich A, Chubanov V, Kalwa H, et al. (2006) Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther 112:744–760

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  PubMed  CAS  Google Scholar 

  • Fahy JV, Wong HH, Geppetti P, et al. (1995) Effect of an NK1 receptor antagonist (CP-99,994) on hypertonic saline-induced bronchoconstriction and cough in male asthmatic subjects. Am J Respir Crit Care Med 152:879–884

    PubMed  CAS  Google Scholar 

  • Ferrari M, Benini L, Brotto E, et al. (2007) Omeprazole reduces the response to capsaicin but not to methacholine in asthmatic patients with proximal reflux. Scand J Gastroenterol 42:299–307

    Article  PubMed  CAS  Google Scholar 

  • Gatti R, Andre E, Amadesi S, et al. (2006) Protease-activated receptor-2 activation exaggerates TRPV1-mediated cough in guinea pigs. J Appl Physiol 101:506–511

    Article  PubMed  CAS  Google Scholar 

  • Geppetti P, Holzer P (1996) Neurogenic inflammation. CRC Press, Boca Raton

    Google Scholar 

  • Geppetti P, Del Bianco E, Patacchini R, et al. (1991) Low pH-induced release of calcitonin gene-related peptide from capsaicin-sensitive sensory nerves: mechanism of action and biological response. Neuroscience 41:295–301

    Article  PubMed  CAS  Google Scholar 

  • Geppetti P, Bertrand C, Bacci E, et al. (1993) Characterization of tachykinin receptors in ferret trachea by peptide agonists and nonpeptide antagonists. Am J Physiol 265:L164–L169

    PubMed  CAS  Google Scholar 

  • Geppetti P, Materazzi S, Nicoletti P (2006) The transient receptor potential vanilloid 1: role in airway inflammation and disease. Eur J Pharmacol 533:207–214

    Article  PubMed  CAS  Google Scholar 

  • Hara J, Fujimura M, Ueda A, et al. (2008) Effect of pressure stress applied to the airway on cough-reflex sensitivity in Guinea pigs. Am J Respir Crit Care Med 177:585–592

    Article  PubMed  Google Scholar 

  • Hardie RC (2003) Regulation of TRP channels via lipid second messengers. Annu Rev Physiol 65:735–759

    Article  PubMed  CAS  Google Scholar 

  • Hinman A, Chuang HH, Bautista DM, et al. (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A 103:19564–19568

    Article  PubMed  CAS  Google Scholar 

  • Hofmann T, Obukhov AG, Schaefer M, et al. (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    Article  PubMed  CAS  Google Scholar 

  • Huang SM, Bisogno T, Trevisani M, et al. (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci U S A 99:8400–8405

    Article  PubMed  CAS  Google Scholar 

  • Hwang SW, Cho H, Kwak J, et al. (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci USA 97:6155–6160

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Koizumi S, Fuziwara S, et al. (2002) Functional vanilloid receptors in cultured normal human epidermal keratinocytes. Biochem Biophys Res Commun 291:124–129

    Article  PubMed  CAS  Google Scholar 

  • Ishiura Y, Fujimura M, Nobata K, et al. (2007) Prostaglandin I2 enhances cough reflex sensitivity to capsaicin in the asthmatic airway. Cough 3:2

    Article  PubMed  Google Scholar 

  • Jaquemar D, Schenker T, Trueb B (1999) An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem 274: 7325–7333

    Article  PubMed  CAS  Google Scholar 

  • Jatakanon A, Lalloo UG, Lim S, et al. (1999) Increased neutrophils and cytokines, TNF-alpha and IL-8, in induced sputum of non-asthmatic patients with chronic dry cough. Thorax 54:234–237

    Article  PubMed  CAS  Google Scholar 

  • Javorkova N, Varechova S, Pecova R, et al. (2008) Acidification of the oesophagus acutely increases the cough sensitivity in patients with gastro-oesophageal reflux and chronic cough. Neurogastroenterol Motil 20:119–124

    PubMed  CAS  Google Scholar 

  • Ji RR, Samad TA, Jin SX, et al. (2002) p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36:57–68

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, Lee LY (2007) Role of TRPV receptors in respiratory diseases. Biochim Biophys Acta 1772:915–927

    PubMed  CAS  Google Scholar 

  • Jia Y, Wang X, Varty L, et al. (2004) Functional TRPV4 channels are expressed in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 287:L272–L278

    Article  PubMed  CAS  Google Scholar 

  • Jordt SE, Bautista DM, Chuang HH, et al. (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  PubMed  CAS  Google Scholar 

  • Kamei J, Yoshikawa Y, Saitoh A (2006) Effect of N-arachidonoyl-(2-methyl-4-hydroxyphenyl) amine (VDM11), an anandamide transporter inhibitor, on capsaicin-induced cough in mice.Cough 2:2

    Article  PubMed  Google Scholar 

  • Karai LJ, Russell JT, Iadarola MJ, et al. (2004) Vanilloid receptor 1 regulates multiple calcium compartments and contributes to Ca2+-induced Ca2+ release in sensory neurons. J Biol Chem 279:16377–16387

    Article  PubMed  CAS  Google Scholar 

  • Kido MA, Muroya H, Yamaza T, et al. (2003) Vanilloid receptor expression in the rat tongue and palate. J Dent Res 82:393–397

    Article  PubMed  CAS  Google Scholar 

  • Kohrogi H, Graf PD, Sekizawa K, et al. (1988) Neutral endopeptidase inhibitors potentiate substance P- and capsaicin-induced cough in awake guinea pigs. J Clin Invest 82:2063–2068

    Article  PubMed  CAS  Google Scholar 

  • Kollarik M, Undem BJ (2006) Sensory transduction in cough-associated nerves. Respir Physiol Neurobiol 152:243–254

    Article  PubMed  Google Scholar 

  • Lalloo UG, Fox AJ, Belvisi MG, et al. (1995) Capsazepine inhibits cough induced by capsaicin and citric acid but not by hypertonic saline in guinea pigs. J Appl Physiol 79:1082–1087

    PubMed  CAS  Google Scholar 

  • Lee J, Kang M, Shin M, et al. (2003) N-(3-acyloxy-2-benzylpropyl)-,N1-[4-(methylsulfonyl-amino)benzyl]thiourea analogues: novel potent and high affinity antagonists and partial antagonists of the vanilloid receptor. J Med Chem 46:3116–3126

    Article  PubMed  CAS  Google Scholar 

  • Leung SY, Niimi A, Williams AS, et al. (2007) Inhibition of citric acid- and capsaicin-induced cough by novel TRPV-1 antagonist, V112220, in guinea-pig. Cough 3:10

    Article  PubMed  Google Scholar 

  • Macpherson LJ, Dubin AE, Evans MJ, et al. (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445:541–545

    Article  PubMed  CAS  Google Scholar 

  • Mazzone SB, McGovern AE (2007) Sensory neural targets for the treatment of cough. Clin Exp Pharmacol Physiol 34:955–962

    Article  PubMed  CAS  Google Scholar 

  • McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  PubMed  CAS  Google Scholar 

  • McLeod RL, Fernandez X, Correll CC, et al. (2006) TRPV1 antagonists attenuate antigen-provoked cough in ovalbumin sensitized guinea pigs. Cough 2:10

    Article  PubMed  Google Scholar 

  • McLeod RL, Jia Y, McHugh NA, et al. (2007) Sulfur-dioxide exposure increases TRPV1-mediated responses in nodose ganglia cells and augments cough in guinea pigs. Pulm Pharmacol Ther 20:750–757

    Article  PubMed  CAS  Google Scholar 

  • McNamara CR, Mandel-Brehm J, Bautista DM, et al. (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci USA. 104:13525–13530

    Article  PubMed  CAS  Google Scholar 

  • Mezey E, Toth ZE, Cortright DN, et al. (2000) Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc Natl Acad Sci USA 97:3655–3660

    Article  PubMed  CAS  Google Scholar 

  • Montell C (1997) New light on TRP and TRPL. Mol Pharmacol 52:755–763

    PubMed  CAS  Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V, et al. (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9:229–231

    Article  PubMed  CAS  Google Scholar 

  • Myers AC, Goldie RG, Hay DW (2005) A novel role for tachykinin neurokinin-3 receptors in regulation of human bronchial Ganglia neurons. Am J Respir Crit Care Med 171:212–216

    Article  PubMed  Google Scholar 

  • Nassenstein C, Kwong K, Taylor-Clark T, et al. (2008) Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J Physiol 586:1595–1604

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Owsianik G, Voets T, et al. (2007) Transient receptor potential cation channels in disease. Physiol Rev. 87:165–217

    Article  PubMed  CAS  Google Scholar 

  • O'Connell P J, Pingle SC, Ahern GP (2005) Dendritic cells do not transduce inflammatory stimuli via the capsaicin receptor TRPV1. FEBS Lett 2:2

    Google Scholar 

  • Peier AM, Moqrich A, Hergarden AC, et al. (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  PubMed  CAS  Google Scholar 

  • Pomonis JD, Harrison JE, Mark L, et al. (2003) N-(4-Tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties. II. In vivo characterization in rat models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 306:387–393

    Article  PubMed  CAS  Google Scholar 

  • Premkumar LS, Ahern GP (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature 408:985–990

    Article  PubMed  CAS  Google Scholar 

  • Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300:1284–1288

    Article  PubMed  CAS  Google Scholar 

  • Rahman I, van Schadewijk AA, Crowther AJ, et al. (2002) 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166:490–495

    Article  PubMed  Google Scholar 

  • Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 4:329–336

    PubMed  CAS  Google Scholar 

  • Schmidlin F, Amadesi S, Dabbagh K, et al. (2002) Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol 169:5315–5321

    PubMed  Google Scholar 

  • Shin J, Cho H, Hwang SW, et al. (2002) Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proc Natl Acad Sci USA 99:10150–10155

    Article  PubMed  CAS  Google Scholar 

  • Steinhoff M, Vergnolle N, Young SH, et al. (2000) Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med 6:151–158

    Article  PubMed  CAS  Google Scholar 

  • Story GM, Peier AM, Reeve AJ, et al. (2003) ANKTM1, a TRP-like channel expressed in noci-ceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  PubMed  CAS  Google Scholar 

  • Su X, Camerer E, Hamilton JR, et al. (2005) Protease-activated receptor-2 activation induces acute lung inflammation by neuropeptide-dependent mechanisms. J Immunol 175:2598–2605

    PubMed  CAS  Google Scholar 

  • Sugiura T, Tominaga M, Katsuya H, et al. (2002) Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1. J Neurophysiol 88:544–548

    PubMed  CAS  Google Scholar 

  • Szallasi A, Blumberg PM (1999) Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 51:159–212

    PubMed  CAS  Google Scholar 

  • Tognetto M, Amadesi S, Harrison S, et al. (2000) Anandamide excites central terminals of dorsal root ganglion neurons via vanilloid receptor-1 (VR-1) activation. J Neurosci 21:1104–1109

    Google Scholar 

  • Tominaga M, Caterina MJ, Malmberg AB, et al. (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Article  PubMed  CAS  Google Scholar 

  • Trevisani M, Gazzieri D, Benvenuti F, et al. (2004) Ethanol causes inflammation in the airways by a neurogenic and TRPV1-dependent mechanism. J Pharmacol Exp Ther 309:1167–1173

    Article  PubMed  CAS  Google Scholar 

  • Trevisani M, Siemens J, Materazzi S, et al. (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci USA. 104:13519–13524

    Article  PubMed  CAS  Google Scholar 

  • Uchida K, Szweda LI, Chae HZ, et al. (1993) Immunochemical detection of 4-hydroxynonenal protein adducts in oxidized hepatocytes. Proc Natl Acad Sci USA 90:8742–8746

    Article  PubMed  CAS  Google Scholar 

  • Vellani V, Mapplebeck S, Moriondo A, et al. (2001) Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol 534: 813–825

    Article  PubMed  CAS  Google Scholar 

  • Vergnolle N, Bunnett NW, Sharkey KA, et al. (2001) Proteinase-activated receptor-2 and hyperal-gesia: A novel pain pathway. Nat Med 7:821–826

    Article  PubMed  CAS  Google Scholar 

  • Walker KM, Urban L, Medhurst SJ, et al. (2003) The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 304:56–62

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Dai Y, Fukuoka T, et al. (2008) Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain 20:20

    Google Scholar 

  • Watanabe N, Horie S, Michael GJ, et al. (2005) Immunohistochemical localization of vanilloid receptor subtype 1 (TRPV1) in the guinea pig respiratory system. Pulm Pharmacol Ther 18: 187–197

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki M, Ebihara S, Freeman S, et al. (2008) Sex differences in the preference for place of death in community-dwelling elderly people in Japan. J Am Geriatr Soc 56:376

    Article  PubMed  Google Scholar 

  • Zygmunt PM, Petersson J, Andersson DA, et al. (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Materazzi, S., Nassini, R., Gatti, R., Trevisani, M., Geppetti, P. (2009). Cough Sensors. II. Transient Receptor Potential Membrane Receptors on Cough Sensors. In: Chung, K.F., Widdicombe, J. (eds) Pharmacology and Therapeutics of Cough. Handbook of Experimental Pharmacology, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79842-2_3

Download citation

Publish with us

Policies and ethics