Skip to main content

Perceptual Docking for Robotic Control

  • Conference paper
Medical Imaging and Augmented Reality (MIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5128))

Included in the following conference series:

Abstract

In current robotic surgery, dexterity is enhanced by microprocessor controlled mechanical wrists which allow motion scaling for reduced gross hand movements and improved performance of micro-scale tasks. The continuing evolution of the technology, including force feedback and virtual immobilization through real-time motion adaptation, will permit complex procedures such as beating heart surgery to be carried out under a static frame-of-reference. In pursuing more adaptive and intelligent robotic designs, the regulatory, ethical and legal barriers imposed on interventional surgical robots have given rise to the need of a tightly integrated control between the operator and the robot when autonomy is considered. This paper outlines the general concept of perceptual docking for robotic control and how it can be used for learning and knowledge acquisition in robotic assisted minimally invasive surgery such that operator specific motor and perceptual/cognitive behaviour is acquired through in situ sensing. A gaze contingent framework is presented in this paper as an example to illustrate how saccadic eye movements and ocular vergence can be used for attention selection, recovering 3D tissue deformation and motor channelling during minimally invasive surgical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore, M.M.: Real-World Applications for Brain-Computer Interface Technology. IEEE Trans. on Neural Systems and Rehabilitation Engineering 11(2), 162–165 (2003)

    Article  Google Scholar 

  2. Wolpaw, J.R., McFarland, D.J.: Control of a Two-Dimensional Movement Signal by a Noninvasive Brain-Computer Interface in Humans. NeuroScience 101(51), 17849–17854 (2004)

    Google Scholar 

  3. Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellow, M.R., Donoghue, J.P.: Instant Neural Control of a Movement Signal. Nature 416, 141–142 (2002)

    Article  Google Scholar 

  4. Yoo, S.S., Fairneny, T., Chen, N.K., Choo, S.E., Panych, L.P., Park, H., Lee, S.Y., Jolesz, F.A.: Brain-Computer Interface Using fMRI: Spatial Navigation by Thoughts. Neuroreport 15(10), 1591–1595 (2004)

    Article  Google Scholar 

  5. Franceschini, M.A., Boas, D.A.: Noninvasive Measurement of Neuronal Activity with Near-Infrared Optical Imaging. NeuroImage 21(1), 372–386 (2004)

    Article  Google Scholar 

  6. Coyle, S.M., Ward, T.E., Markham, C.M.: Brain-Computer Interface Using a Simplified Functional Near-Infrared Spectroscopy System. Journal of Neural Eng. 4(3), 219–226 (2007)

    Article  Google Scholar 

  7. Tsubone, T., Muroga, T., Wada, Y.: Application to Robot Control Using Brain Function Measurement by Near-Infrared Spectroscopy. In: Proc. of IEEE Eng. Med. Biol. Soc., pp. 5324–5345 (2007)

    Google Scholar 

  8. Sitaram, R., Zhang, H., Guan, C., Thulasidas, M., Hoshi, Y., Ishikawa, A., Shimizu, K., Birbaumer, N.: Temporal Classification of Multichannel Near-Infrared Spectroscopy Signals of Motor Imagery for Developing a Brain-Computer Interface. Neuroimage 34(4), 1416–1427 (2007)

    Article  Google Scholar 

  9. Leff, D., Koh, P.H., Aggarwal, R., Leong, J., Deligiani, F., Elwell, C., Delpy, D.T., Darzi, A., Yang, G.Z.: Optical Mapping of the Frontal Cortex During a Surgical Knot-Tying Task, a Feasibility Study. In: Medical Imaging Augmented Reality, pp. 140–147 (2006)

    Google Scholar 

  10. Leff, D.R., Leong, J.J., Aggarwal, R., Yang, G.Z., Darzi, A.: Could Variations in Technical Skills Acquisition in Surgery be Explained by Differences in Cortical Plasticity? Annals of Surgery 247(3), 540–543 (2008)

    Article  Google Scholar 

  11. Leff, D.R., Orihuela-Espina, F., Atallah, L., Darzi, A., Yang, G.Z.: Functional Near Infrared Spectroscopy in Novice and Expert Surgeons - a Manifold Embedding Approach. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 270–277. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Leff, D.R., Elwell, C.E., Orihuela-Espina, F., Atallah, L., Delpy, D.T., Darzi, A.W., Yang, G.Z.: Changes in Prefrontal Cortical Behaviour Depend Upon Familiarity on a Bimanual Co-Ordination Task: an fNIRS Study. Neuroimage 39(2), 805–813 (2008)

    Article  Google Scholar 

  13. Yang, G.Z., Dempere-Marco, L., Hu, X.-P., Rowe, A.: Visual Search: Psychophysical Models and Practical Applications. Image and Vision Computing 20, 291–305 (2002)

    Article  Google Scholar 

  14. Mylonas, G.P., Darzi, A., Yang, G.Z.: Gaze Contingent Depth Recovery and Motion Stabilisation for Minimally Invasive Robotic Surgery. In: Yang, G.-Z., Jiang, T. (eds.) MIAR 2004. LNCS, vol. 3150, pp. 311–319. Springer, Heidelberg (2004)

    Google Scholar 

  15. Mylonas, G.P., Stoyanov, D., Deligianni, F., Darzi, A., Yang, G.-Z.: Gaze-Contingent Soft Tissue Deformation Tracking for Minimally Invasive Robotic Surgery. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 843–850. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Lerotic, M., Chung, A.J., Mylonas, G., Yang, G.-Z.: pq-Space Based Non-Photorealistic Rendering for Augmented Reality. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 102–109. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Rosenberg, L.B.: Virtual Fixtures: Perceptual Tools for Telerobotic Manipulation. In: Proc. of the IEEE Annual International Symposium on Virtual Reality, pp. 76–82 (1993)

    Google Scholar 

  18. Mylonas, G.P., Kwok, K.-W., Darzi, A., Yang, G.Z.: Gaze-Contingent Motor Channelling and Haptic Constraints for Minimally Invasive Robotic Surgery. In: Proceedings of the 11th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2008, New York (to appear, 2008)

    Google Scholar 

  19. Okamura, A.M.: Methods for Haptic Feedback in Teleoperated Robot-Assisted Surgery. Industrial Robot: An International Journal 31(6), 499–508 (2004)

    Article  Google Scholar 

  20. Mendoza, C., Laugier, C.: Tissue Cutting Using Finite Elements and Force Feedback. In: Proc. of International Symposium on Surgery Simulation and Soft Tissue Modeling, pp. 175–182 (2003)

    Google Scholar 

  21. Crouch, J.R., Schneider, C.M., Wainer, J., Okamura, A.M.: A Velocity-Dependent Model for Needle Insertion in Soft Tissue. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 624–632. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Heverly, M., Dupont, P., Triedman, J.: Trajectory Optimization for Dynamic Needle Insertion. In: Proc. of the 2005 IEEE International Conf. on Robotics and Automation, pp. 1646–1651 (2005)

    Google Scholar 

  23. Kennedy, C.W., Hu, T., Desai, J.P., Wechsler, A.S., Kresh, J.Y.: A Novel Approach to Robotic Cardiac Surgery Using Haptics and Vision. Cardiovascular Engineering: An International Journal 2(1), 15–21 (2002)

    Article  Google Scholar 

  24. Tholey, G., Desai, J.P.: A General Purpose 7 DOF Haptic Device: Applications Towards Robot-Assisted Surgery. IEEE/ASME Trans. on Mechatronics 12(6), 662–669 (2007)

    Article  Google Scholar 

  25. Unger, B., Hollis, R., Klatzky, R.: JND Analysis of Texture Roughness Perception Using a Magnetic Levitation Haptic Device. In: Proc. Of the 2nd Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 9–15 (2007)

    Google Scholar 

  26. Saddik, E.: The Potential of Haptics Technologies. IEEE Instrumentation and Measurement Magazine 10(1), 10–17 (2007)

    Article  Google Scholar 

  27. Lin, M., Salisbury, K.: Haptic Rendering-Beyond Visual Computing. IEEE Computer Graphics and Applications 24(2), 22–23 (2004)

    Article  Google Scholar 

  28. Orozco, M., Asfaw, Y., Shirmohammadi, S.S., Adler, A., Saddik, A.E.: Haptic-Based Biometrics: A Feasibility Study. In: Proc. of the Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 265–271 (2006)

    Google Scholar 

  29. Tsagarakis, N.G., Petrone, M., Testi, D., Mayoral, R., Zannoni, C., Viceconti, M., Clapworthy, G.J., Gray, J.O., Caldwell, D.G.: Pre-Operative Planning for Total Hip Arthroplasty Using a Haptic Enabled Multimodal Interface and Framework. IEEE Trans. of Multimedia and Visualization: Special issue in Haptics 13(3), 40–48 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Takeyoshi Dohi Ichiro Sakuma Hongen Liao

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, GZ., Mylonas, G.P., Kwok, KW., Chung, A. (2008). Perceptual Docking for Robotic Control. In: Dohi, T., Sakuma, I., Liao, H. (eds) Medical Imaging and Augmented Reality. MIAR 2008. Lecture Notes in Computer Science, vol 5128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79982-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79982-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79981-8

  • Online ISBN: 978-3-540-79982-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics