Skip to main content

Efficient Data Collection and Selective Queries in Sensor Networks

  • Chapter
GeoSensor Networks (GSN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4540))

Included in the following conference series:

Abstract

Efficient data collection in wireless sensor networks (SNs) plays a key role in power conservation. It has spurred a number of research projects focusing on effective algorithms that reduce power consumption with effective in-network aggregation techniques. Up to now, most approaches are based on the assumption that data collection involves all nodes of a network. There is a large number of queries that in fact select only a subset of the nodes in a SN. Thus, we concentrate on selective queries, i.e., queries that request data from a subset of a SN. The task of optimal data collection in such queries is an instance of the NP-hard minimal Steiner tree problem. We argue that selective queries are an important class of queries that can benefit from algorithms that are tailored for partial node participation of a SN. We present an algorithm, called Pocket Driven Trajectories (PDT), that optimizes the data collection paths by approximating the global minimal Steiner tree using solely local spatial knowledge. We identify a number of spatial factors that play an important role for efficient data collection, such as the distribution of participating nodes over the network, the location and dispersion of the data clusters, the location of the sink issuing a query, as well as the location and size of communication holes. In a series of experiments, we compare performance of well-known algorithms for aggregate query processing against the PDT algorithm in partial node participation scenarios. To measure the efficiency of all algorithms, we also compute a near-optimal solution, the globally approximated minimal Steiner tree. We outline future research directions for selective queries with varying node participation levels, in particular scenarios in which node participation is the result of changing physical phenomena as well as reconfigurations of the SN itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an acquisitional query processing system for sensor networks. ACM Trans. Database Syst. 30(1), 122–173 (2005)

    Article  Google Scholar 

  2. Yao, Y., Gehrke, J.: Query processing for sensor networks. In: Proceedings of the Conference on Innovative Data Systems, pp. 233–244 (2003)

    Google Scholar 

  3. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a Tiny AGgregation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36(SI), 131–146 (2002)

    Article  Google Scholar 

  4. Nath, S., Gibbons, P.B., Seshan, S., Anderson, Z.R.: Synopsis diffusion for robust aggregation in sensor networks. In: Proceedings of SenSys, pp. 250–262 (2004)

    Google Scholar 

  5. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acquisitional query processor for sensor networks. In: Proceedings of SIGMOD, pp. 491–502 (2003)

    Google Scholar 

  6. Oliveira, C.A.S., Pardalos, P.M.: A survey of combinatorial optimization problems in multicast routing. Comput. Oper. Res. 32(8), 1953–1981 (2005)

    Article  MATH  Google Scholar 

  7. Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta Informatica 15, 141–145 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Takahashi, H., Matsuyama, A.: An approximate solution for the Steiner problem in graphs. Math Japonica 24, 573–577 (1980)

    MathSciNet  MATH  Google Scholar 

  9. Silberstein, A., Braynard, R., Yang, J.: Constraint chaining: on energy-efficient continuous monitoring in sensor networks. In: Proceedings of SIGMOD, pp. 157–168 (2006)

    Google Scholar 

  10. Chou, J., Petrovic, D., Ramachandran, K.: A distributed and adaptive signal processing approach to reducing energy consumption in sensor networks. In: Proceedings of INFOCOM, vol. 2, pp. 1054–1062 (2003)

    Google Scholar 

  11. Bonfils, B.J., Bonnet, P.: Adaptive and Decentralized Operator Placement for In-Network Query Processing. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 47–62. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Bawa, M., Gionis, A., Garcia-Molina, H., Motwani, R.: The price of validity in dynamic networks. In: Proceedings of the SIGMOD, pp. 515–526 (2004)

    Google Scholar 

  13. Considine, J., Li, F., Kollios, G., Byers, J.: Approximate aggregation techniques for sensor databases. In: Proceedings of ICDE, pp. 449–460 (2004)

    Google Scholar 

  14. Cardei, M., Wu, J.: Energy-efficient coverage problems in wireless ad hoc sensor networks. Computer Communications 29(4), 413–420 (2006)

    Article  Google Scholar 

  15. Manjhi, A., Nath, S., Gibbons, P.B.: Tributaries and deltas: efficient and robust aggregation in sensor network streams. In: Proceedings of SIGMOD, pp. 287–298 (2005)

    Google Scholar 

  16. Chu, D., Deshpande, A., Hellerstein, J., Hong, W.: Approximate data collection in sensor networks using probabilistic models. In: Proceedings of ICDE, p. 48 (2006)

    Google Scholar 

  17. Pattem, S., Krishnamachari, B., Govindan, R.: The impact of spatial correlation on routing with compression in wireless sensor networks. In: Proceedings of IPSN, pp. 28–35 (2004)

    Google Scholar 

  18. Xu, Y., Heidemann, J., Estrin, D.: Geography-informed energy conservation for ad hoc routing. In: Proceedings of MobiCom, pp. 70–84 (2001)

    Google Scholar 

  19. Yoon, S., Shahabi, C.: Exploiting spatial correlation towards an energy efficient clustered aggregation technique (CAG). In: Proceedings of the ICC, pp. 82–98 (2005)

    Google Scholar 

  20. Gupta, H., Navda, V., Das, S.R., Chowdhary, V.: Efficient gathering of correlated data in sensor networks. In: Proceedings of MobiHoc, pp. 402–413 (2005)

    Google Scholar 

  21. Krishnamachari, B., Estrin, D., Wicker, S.B.: The impact of data aggregation in wireless sensor networks. In: Proceedings of ICDCSW, pp. 575–578 (2002)

    Google Scholar 

  22. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In: Proceedings of SODA, pp. 770–779 (2000)

    Google Scholar 

  23. Doar, M., Leslie, I.M.: How bad is naive multicast routing? In: Proceedings of INFOCOM, pp. 82–89 (1993)

    Google Scholar 

  24. NS-2: The network simulator NS-2 documentation, http://www.isi.edu/nsnam/ns/ns-documentation.html

  25. Yu, Y., Govindan, R., Estrin, D.: Geographical and energy aware routing: A recursive data dissemination protocol for wireless sensor networks. Technical Report TR-01-0023, University of California, Los Angeles, Computer Science Department (2001)

    Google Scholar 

  26. Somasundara, A.A., Jea, D.D., Estrin, D., Srivastava, M.B.: Controllably mobile infrastructure for low energy embedded networks. IEEE Transactions on Mobile Computing 5(8), 958–973 (2006)

    Article  Google Scholar 

  27. Wang, G., Cao, G., Porta, T.F.L.: Movement-assisted sensor deployment. IEEE Transactions on Mobile Computing 5(6), 640–652 (2006)

    Article  Google Scholar 

  28. Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A., Shih, E., Balakrishnan, H., Madden, S.: CarTel: a distributed mobile sensor computing system. In: Proceedings of SenSys, pp. 125–138 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Silvia Nittel Alexandros Labrinidis Anthony Stefanidis

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kulik, L., Tanin, E., Umer, M. (2008). Efficient Data Collection and Selective Queries in Sensor Networks. In: Nittel, S., Labrinidis, A., Stefanidis, A. (eds) GeoSensor Networks. GSN 2006. Lecture Notes in Computer Science, vol 4540. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79996-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79996-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79995-5

  • Online ISBN: 978-3-540-79996-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics