Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 158))

Summary

In this chapter we apply a computational geometry technique to investigate the structure of packings of hard spheres. The hard sphere model is the base for understanding the structure of many physical matters: liquids, solids, colloids and granular materials. The structure analysis is based on the concept of the Voronoi Diagram (Voronoi-Delaunay tessellation), which is well known in mathematics and physics. The Delaunay simplexes are used as the main instrument for this work. They define the simplest structural elements in the three-dimensional space. A challenging problem is to relate geometrical characteristics of the simplexes (e.g. their shape) with structural properties of the packing. In this chapter we review our recent results related to this problem. The presented outcome may be of interest to both mathematicians and physicists. The idea of structural analysis of atomic systems, which was first proposed in computational physics, is a subject for further mathematical development. On the other hand, physicists, chemists and material scientists, who are still using traditional methods for structure characterization, have an opportunity to learn more about this new technique and its implementation. We present the analysis of hard sphere packings with different densities. Our method permits to tackle a renowned physical problem: to reveal a geometrical principle of disordered packings. The proposed analysis of Delaunay simplexes can also be applied to structural investigation of other molecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aste, T., Weaire, D.: The Pursuit of Perfect Packing (Institute of Physics, Bristol 2000)

    Google Scholar 

  2. Hales, T.C.: A proof of the Kepler conjecture. Annals of Mathematics 162, 1065–1185 (2005)

    MATH  MathSciNet  Google Scholar 

  3. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer, New York (1988)

    MATH  Google Scholar 

  4. Temperley, H.N.V., Rowlison, J.S., Rushbrooke, G.S.: Physics of simple liquids. Noth-Holland Pub.Company, Amsterdam (1968)

    Google Scholar 

  5. Croxton, C.A.: Liquid state physics – a statistical mechanical introduction. Cambridge Univ. Press, Cambridge (1974)

    Google Scholar 

  6. Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids, 3rd edn. Academic press, Amsterdam (2006)

    Google Scholar 

  7. van Blaaderen, A., Wiltzius, P.: Real-Space structure of colloidal hard-sphere glasses. Science 270, 1177–1179 (1995)

    Article  Google Scholar 

  8. Gasser, U., Schofield, A., Weitz, D.A.: Local order in a supercooled colloidal fluid observed by confocal microscopy. J. Phys. Condence. Matter 15, S375–S380 (2003)

    Article  Google Scholar 

  9. Aste, T., Saadatfar, M., Senden, T.J.: Geometrical structure of disordered sphere packings. Phy. Rev. E 71, 61302 (2005)

    Article  Google Scholar 

  10. Voronoi, G.F.: Nouvelles applications des parametres continus a la theorie des formes quadratiques. Deuxieme Memorie: Recherches sur les paralleloedres primitifs. J. Reine Angew Math. 136, 67 (1909)

    MATH  Google Scholar 

  11. Delaunay, B.N.: Sur la sph‘ere vide. A la memoire de Georges Voronoi. Izv Akad Nauk SSSR Otd Mat i Estestv nauk 7, 793 (1934)

    Google Scholar 

  12. Okabe, A., Boots, B., Sugihara, K., Chiu, S.: Spatial tessellations - concepts and applications of Voronoi diagrams. Wiley, New-York (2000)

    MATH  Google Scholar 

  13. Medvedev, N.N.: Voronoi-Delaunay method for non-crystalline structures. SB Russian Academy of Science, Novosibirsk (2000) (in Russian)

    Google Scholar 

  14. Finney, J.L.: Random packings and the structure of simple liquids. I. The geometry of random close packing. Roy. Soc. London 319, 479–494 (1970)

    Google Scholar 

  15. O’Malley, B., Snook, I.: Crystal nucleation in the hard sphere system. Phys. rev. Lett. 90, 85702 (2003)

    Article  Google Scholar 

  16. Bosticka, D., Vaisman, I.I.: A new topological method to measure protein structure similarity. Biochem. and Biophys. Res. Comm. 304, 320–325 (2003)

    Article  Google Scholar 

  17. Alinchenko, M.G., Anikeenko, A.V., Medvedev, N.N., Voloshin, V.P., Mezei, M., Jedlovszky, P.: Morphology of voids in Molecular Systems. A Voronoi-Delaunay analysis of a simulated DMPC membrane. J. Phys. Chem. B 108, 19056 (2004)

    Article  Google Scholar 

  18. Bryant, S., Blunt, M.: Prediction of relative permeability in simple pore media. Phys. Rev. 46(4), 2004–2011 (1992)

    Article  Google Scholar 

  19. Naberukhin, Y.I., Voloshin, V.P., Medvedev, N.N.: Geometrical analysis of the structure of simple liqids: percolation approach. Mol. Phys. 73(4), 917–936 (1991)

    Article  Google Scholar 

  20. Medvedev, N.N., Naberukhin Yu., I.: Structure of simple liquids as a percolation problem on the Voronoi network. J. Phys. A: Math. Gen. 21, L247–L252 (1988)

    Article  Google Scholar 

  21. Voloshin, V.P., Naberukhin, Y.I., Medvedev, N.N., Jone, M.S.: Investigation of free volume percolation under the liquid-glass phase transition. J. Chem. Phys. 102, 4981–4986 (1995)

    Article  Google Scholar 

  22. Naberukhin, Y.I., Voloshin, V.P., Medvedev, N.N.: Geometrical analysis of the structure of simple liqids: percolation approach. Mol. Phys. 73(4), 917–936 (1991)

    Article  Google Scholar 

  23. Gellatly, B.J., Finney, J.L.: Characterisation of models of multicomponent amorphous metals: the radical alternative to the Voronoi polyhedron. J. Non-Cryst. Solids 50, 313–329 (1982)

    Article  Google Scholar 

  24. Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM Journal on Computing 16(1), 78–96 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gavrilova, M., Rokne, J.: An efficient algorithm for construction of the power diagram for the Voronoi diagram in plane. Int. J. Comput. Math. 61, 49–61 (1997)

    Article  Google Scholar 

  26. Telley, H., Liebling, T.M., Mocellin, A.: The Laguerre model of grain growth in two dimensions I. Cellular structures viewed as dynamical Laguerre tessellations. Philosophical Magazine B 73(3), 395–408 (1996)

    Article  Google Scholar 

  27. Aurenhammer, F., Edelsbruner, H.: An optimal algorithm for construction the weighted Voronoi diagram in the plane. Pattern Recognition 17(2), 251–257 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gavrilova, M.: A Reliable Algorithm for Computing the Generalized Voronoi Diagram for a Set of Spheres in the Euclidean d-dimensional Space. In: Proceedings of the 14th Canadian Conference on Computational Geometry, August, Lethbridge, Canada, pp. 82–87 (2002)

    Google Scholar 

  29. Kim, D.-S., Cho, Y., Kim, D.: Euclidean Voronoi diagram of 3D balls and its computation via tracing edges. Computer-Aided Design 37(13), 1412–1424 (2005)

    Article  Google Scholar 

  30. Anishchik, S.V., Medvedev, N.N.: Three-dimensional Apollonian packing as a model for dense granular systems. Phys. Rev. Lett. 75(23), 4314–4317 (1995)

    Article  Google Scholar 

  31. Medvedev, N.N., Voloshin, V.P., Luchnikov, V.A., Gavrilova, M.L.: An algorithm for three-dimensional Voronoi S-network. J. of Comput. Chem. 27(14), 1676–1692 (2006)

    Article  Google Scholar 

  32. Kendall, D.G., Barden, D., Carne, T.K., Le, H.: Shape and shape theory. Wiley, Chichester (1999)

    MATH  Google Scholar 

  33. Small, C.: The statistical theory of shape. Springer, New York (1996)

    MATH  Google Scholar 

  34. Anikeenko, A.V., Medvedev, N.N., Gavrilova, M.L.: Application of Procrustes Distance to Shape Analysis of Delaunay Simplexes. In: Werner, B. (ed.) Proceedings of the 3rd International Symposium on Voronoi Diagrams in Science and Engineering 2006, pp. 148–152. IEEE Computer Society, Los Alamitos (2006)

    Chapter  Google Scholar 

  35. Kimura, M., Yonezawa, F.: Nature of amorphous and liquid structures—computer simulations and statistical geometry. J. Non-Cryst. Solids 535, 61–62 (1984)

    Google Scholar 

  36. Medvedev, N.N., Naberukhin, Y.I.: Shape of the Delaunay simplices in dense random packings of hard and soft spheres. J. Non-Cryst. Solids 94, 402–406 (1987)

    Article  Google Scholar 

  37. Lynden-Bell, R.M., Debenedetti, P.: Computational Investigation of Order, Structure, and Dynamics in Modified Water Models. J. Phys. Chem. B 109(14), 6527–6534 (1987)

    Article  Google Scholar 

  38. Medvedev, N.N., Naberukhin, Y.I.: Delaunay simplices of simple liquid and amorphous materials. Dolkady Akad.Nauk USSR 288(5), 1104–1107 (1986) (in Russian)

    Google Scholar 

  39. Dompierre, J., Vallet, M.-G., Labbé, P., Guibault, F.: An analysis of simplex shape measures for anisotropic meshes. Computer Methods in Applied Mechanics and Engineering 194(48-49), 4895–4914 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  40. Hales, T.C.: Sphere packings, I. Discrete Comput. Geom. 17, 1–51 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  41. Anikeenko, A.V., Gavrilova, M.L., Medvedev, N.N.: The coloring of the Voronoi network: investigation of structural heterogeneity in the packings of spheres. Japan J. Indust. Appl. Math. 22, 151–165 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  42. Oleinikova, A., Brovchenko, I.: Percolating networks and liquid–liquid transitions in supercooled water. J. Phys. Condens. Matter 18, S2247–S2259 (2006)

    Article  Google Scholar 

  43. Voloshon, V.P., Naberukhin, Y.I., Medvedev, N.N.: Can various classes of atomic configurations (Delaunay simplices) be distinguished in random dense packing of spherical particles? Mol. Simulation 4, 209–227 (1989)

    Article  Google Scholar 

  44. Dryden, I.L., Mardia, K.: Statistical Shape Analysis. John Wiley & Sons, New York (1998)

    MATH  Google Scholar 

  45. Eggert, D., Lorusso, A., Fisher, R.B.: Estimating 3-D Rigid Body Transformations: A Comparison of Four Major Algorithms. Machine Vision and Applications 9, 272–290 (1997)

    Article  Google Scholar 

  46. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(4), 378–380 (1991)

    Article  Google Scholar 

  47. Anikeenko, A.V., Medvedev, N.N.: Polytetrahedral Nature of the Dense Disordered Packings of Hard Spheres. PRL 98, 235504 (2007)

    Article  Google Scholar 

  48. Anikeenko, A.V., Gavrilova, M.L., Medvedev, N.N.: A novel Delaunay simplex technique for detection of crystalline nuclei in dense packings of spheres. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 816–826. Springer, Heidelberg (2005)

    Google Scholar 

  49. Anikeenko, A.V., Medvedev, N.N.: Homogeneous crystallization of the Lennard-Jones liquid. Structural analysis based on Delaunay simplices method. Journal of Structural Chemistry 47(2), 267–276 (2006)

    Article  Google Scholar 

  50. Bernal, J.D.: A geometrical approach to the structure of liquids. Nature 183, 141–147 (1959)

    Article  Google Scholar 

  51. Bernal, J.D.: Geometry of the structure of monatomic liquids. Nature 185, 68–70 (1960)

    Article  Google Scholar 

  52. Bernal, J.D.: The Bakerian lecture, 1962. The structure of liquids. Proc. R. Soc. Lond. A 280, 299–322 (1964)

    Google Scholar 

  53. Onoda, G.Y., Liniger, E.G.: Random loose packings of uniform spheres and the dilatancy onset. Phys. Rev. Lett. 64, 2727–2730 (1990)

    Article  Google Scholar 

  54. Aste, T.: Variations around disordered close packing. J. Phys. Condens. Matter 17, S2361–S2390 (2005)

    Article  Google Scholar 

  55. Finney, J.L., Wallace, J.: Interstice correlation functions: a new, sensitive characterization of non-crystalline packed structures. J. Non-Cryst. Solids 43, 165–187 (1981)

    Article  Google Scholar 

  56. Medvedev, N.N.: Aggregation of tetrahedral and quartoctahedral Delaunay simplices in liquid and amorphous rubidium. J. Phys. Condens. Matter 2, 9145–9154 (1990)

    Article  Google Scholar 

  57. Anikeenko, A.V., Medvedev, N.N., Aste, T.: Structural and entropic insights into the nature of random close packing limit. Phys. Rev. E 77, 31101 (2008)

    Article  Google Scholar 

  58. Frank, F.C.: Supercooling of liquids. Proc. R. Soc. London. A 215, 43–46 (1952)

    Article  Google Scholar 

  59. Reichert, H., et al.: Observation of five –fold local symmetry in liquid lead. Nature 408, 839–841 (2000)

    Article  Google Scholar 

  60. Schenk, T., Holland-Moritz, D., Simonet, V., Bellissent, R., Herlach, D.M.: Icosahedral short -range order in deeply undercooled metallic melts. Phys. Rev. Lett. 89(7), 75507 (2002)

    Article  Google Scholar 

  61. Scott, G.D., Kilgour, D.M.: The Density of Random Close Packing of Spheres. Brit. J. Appl. Phys (J. Phys. D) 2, 863–869 (1969)

    Google Scholar 

  62. Jodrey, W.S., Tory, E.M.: Computer simulation of close random packing of equal spheres. Phys. Rev. A 32, 2347–2351 (1985)

    Article  Google Scholar 

  63. Clarke, A., Jonsson, H.: Structural changes accompanying densification of random hard-sphere packings. Phys Rev. E 47(6), 3975–3984 (1993)

    Article  Google Scholar 

  64. Rintoul, M.D., Torquato, S.: Hard-sphere statistics along the metastable amorphous branch. Phys. Rev. E 58(1), 532–537 (1998)

    Article  Google Scholar 

  65. Anikeenko, A.V., Medvedev, N.N., Elsner, A., Lochmann, K., Stoyan, D.: Critical densities in hard sphere packings. Delaunay simplex analysis. In: Proc.of the 3rd Inter. Symp. Voronoi Diagrams in Science and Engin. 2006, pp. 153–158. IEEE Computer Society, Los Alamitos (2006)

    Chapter  Google Scholar 

  66. Torquato, S., Truskett, T.M., Debenedetti, P.G.: Is random close packing of spheres well defined? Phys. Rev. Lett. 84(10), 2064–2067 (2000)

    Article  Google Scholar 

  67. Richard, P., Oger, L., Troadec, J.-P., Gervois, A.: Geometrical characterization of hard-sphere systems. Phys. Rev. E 60(4), 4551–4558 (1999)

    Article  Google Scholar 

  68. Anikeenko, A.V., Medvedev, N.N.: Structural features of dense hard-sphere packings. Critical densities. Zhurnal Strukturnoi Khimii 48(4), 823–830 (2007) (in russian)

    Google Scholar 

  69. Lochmann, K., Anikeenko, A.V., Elsner, A., Medvedev, N.N., Stoyan, D.: Statistical verification of crystallization in hard sphere packings under densification. Eur. Phys. J. B 53, 67–76 (2006)

    Article  Google Scholar 

  70. Hoover, W.G., Ree, F.H.: Melting transition and communal entropy for hard spheres. J. Chem. Phys. 49, 3609–3617 (1968)

    Article  Google Scholar 

  71. Auer, S., Frenkel, D.: Numerical prediction of absolute crystallization rates in hard-sphere colloids. J. Chem. Phys. 120, 3015–3029 (2004)

    Article  Google Scholar 

  72. Skoge, M., Donev, A., Stillinger, F.H., Torquato, S.: Physical Review E.  74, 41127 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anikeenko, A.V., Gavrilova, M.L., Medvedev, N.N. (2009). Shapes of Delaunay Simplexes and Structural Analysis of Hard Sphere Packings. In: Gavrilova, M.L. (eds) Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. Studies in Computational Intelligence, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85126-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85126-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85125-7

  • Online ISBN: 978-3-540-85126-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics