Skip to main content

An Attempt for an Amazon Geoid Model Using Helmert Gravity Anomaly

  • Conference paper
Observing our Changing Earth

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 133))

Abstract

This paper describes the computation of a geoid model for the Amazon Basin (GEOAMA) limited by 5°N and 10°S in latitude and 70°W and 50°W in longitude. The software package SHGEO developed by the University of New Brunswick, Canada, was used for the calculation. The geoid model was derived by using the following data: digital terrain model SRTM3 (Shuttle Recovery Topography Mission) version 2.0 with 3” grid, the geopotential model EIGEN-GL04S1, degree and order 150, derived from GRACE satellite, and terrestrial gravity data basically observed along the rivers. For GEOAMA validation the longitudinal profiles of some rivers over the basin derived from three geoid models (EGM96, MAPGEO2004 and (EIGEN-GL04C) combined with geodetic heights from 28 GPS stations close to the tide gage stations were used. The results show that GEOAMA is in good agreement with the EGM96, MAPGEO2004 and EIGEN-GL04C profiles and with the average of the main rivers (Solimões and Amazonas) gradient (20 mm/km). MAPGEO2004 has been the official geoid model in Brazil since 2004. It was developed by Brazilian Institute of Geography and Statistics (IBGE) and Surveying and Geodesy Laboratory of the University of São Paulo (LTG/USP)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, O. B. and Knudsen, P. (1998). Global Marine Gravity Field from the ERS-1 and GEOSAT Geodetic Mission Altimetry. Journal of Geophysical Research., 103(C4), 8129–8137

    Article  Google Scholar 

  • Campos, I.O. (2004). Referencial altimétrico para a Bacia do Rio Amazonas. PhD thesis - Escola Politécnica, Universidade de São Paulo, São Paulo, 112 p

    Google Scholar 

  • Companhia de Pesquisa de Recursos Minerais (1999). Diagnóstico do Potencial Ecoturístico do Município de Monte Alegre. CPRM, Available online at: http://www.cprm.gov.br

  • Ellmann, A. (2005a). SHGEO software packages–An UNB application to Stokes-Helmert approach for precise geoid computation, reference manual I, 36 p

    Google Scholar 

  • Ellmann, A. (2005b). SHGEO software packages–An UNB application to Stokes-Helmert approach for precise geoid computation, reference manual II, 43 p

    Google Scholar 

  • Ellmann, A., P. Vaníček (2007). UNB application of Stokes-Helmert’s approach to geoid computation, Journal of Geodynamics, 43, 200–213

    Article  Google Scholar 

  • Farr, T. G., P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, D. Alsdorf (2007), The Shuttle Radar Topography Mission, Reviews of Geophysics, 45, RG2004, doi:10.1029/2005RG000183

    Article  Google Scholar 

  • Förste, Ch., F. Flechtner, R. Schmidt, R. König, U. Meyer, R. Stubenvoll, M. Rothacher, F. Barthelmes, H. Neumayer, R. Biancale, S. Bruinsma, J.M. Lemoine, S. Loyer, (2006). A mean global gravity field model from the combination of satellite mission and altimetry/gravimetry surface data – EIGEN-GL04C, Geophysical Research Abstracts, 8, 03462

    Google Scholar 

  • Hasting, D.A., P.K Dunbar (1999). Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Documentation, Volume 1.0. Key to Geophysical Records Documentation (KGRD) 34. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, Colorado 80303, USA

    Google Scholar 

  • Hensley, S., R. Munjy, P. Rosen (2001). Interferometric synthetic aperture radar. In: Maune, D. F. (Ed.). Digital Elevation Model Technologies Applications: the DEM Users Manual. Bethesda, Maryland: ASPRS (The Imaging & Geospatial Information Society), cap. 6, pp. 142–206

    Google Scholar 

  • Heiskanen, W.A., H. Moritz, (1967). Physical Geodesy, W.H. Freeman, San Francisco, 364 pp

    Google Scholar 

  • Instituto Brasileiro de Geografia e Estatistica (2004). Modelo de ondulação geoidal – programa MAPGEO2004. IBGE, Available online at: http://www.ibge.gov.br

  • Janák J., P. Vaníček, (2005). Mean free-air gravity anomalies in the mountains, Studia Geophysica et Geodaetica 49, pp. 31–42

    Article  Google Scholar 

  • JPL (2004). SRTM – The Mission to Map the World. Jet Propulsion Laboratory, California Inst. of Techn., http://www2.jpl.nasa.gov/srtm/index.html

  • Johnson, C.P., P.A.M. Berry, R.D. Hilton (2001). Report on ACE generation, Leicester, UK, http://www.cse.dmu.ac.uk/geomatics/ace/ACE_report.pdf

  • Kellogg, O.D., 1929. Foundations of Potential Theory. Springer, Berlin

    Google Scholar 

  • Kosuth, P., A. Cazenave, (2002). Développement de l’altimétrie satellitaire radar pour le suivi hydrologique des plans d’eau continentaux: Application au réseau hydrographique de l’Amazone, rapport, project PNTS 00/0031/INSU, rapport d’activités 2000–2001, 2002, 39 p

    Google Scholar 

  • Lemoine, F.G., N.K. Pavlis, S.C. Kenyon, R.H. Rapp, E.C. Pavlis, B.F. Chao (1998a). New high-resolution modle developed for Earth’ gravitational field EOS, Transactions, AGU, 79, 9, March 3, No 113, 117–118

    Google Scholar 

  • Lemoine, F.G., S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn, C.M. Cox, S.M. Klosko, S.B. Luthcke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, R.H. Rapp, T.R. Olson (1998b). The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA/TP-1998-206861. National Aeronautics and Space Administration, Maryland, USA

    Google Scholar 

  • Lobianco, M.C.B. (2005) Determinação das alturas do geóide no Brasil. PhD thesis – Escola Politécnica, Universidade de São Paulo, São Paulo, 160 p. http://www.teses.usp.br/teses/disponiveis/3/3138/tde-21022006-162205/

  • Lobianco, M.C.B., Blitzkow, A.C.O.C. Matos (2005). O novo modelo geoidal para o Brasil, IV Colóquio Brasileiro de Ciências Geodésicas, Curitiba, 16 a 20 de maio de 2005 (CDROM)

    Google Scholar 

  • Martinec, Z., (1993). Effect of lateral density variations of topographical masses in view of improving geoid model accuracy over Canada. Final Report of the contract DSS No. 23244-2-4356. Geodetic Survey of Canada, Ottawa

    Google Scholar 

  • Novák, P., (2000). Evaluation of gravity data for the Stokes–Helmert solution to the geodetic boundary-value problem. Technical Report No. 207, Department of Geodesy and Geomatics Engineering,. University of New Brunswick, Fredericton

    Google Scholar 

  • Saleh, J., N.K. Pavlis (2002). The development and evaluation of the global digital terrain model DTM2002, 3rd Meeting of the International Gravity and Geoid Commission, Thessaloniki, Greece

    Google Scholar 

  • Sun W., P. Vaníček, (1998). On some problems of the downward continuation of the 5’ × 5’ mean Helmert gravity disturbance, Journal of Geodesy 72, pp. 411–420

    Article  Google Scholar 

  • Vaníček, P., A. Kleusberg, (1987). The Canadian geoid-Stokesian approach. Manuscripta Geodaetica, 12(2), pp. 86–98

    Google Scholar 

  • Vaníček, P., L.E. Sjöberg (1991), Reformulation of Stokes’s theory for higher than second-degree reference field and modification of integration kernels, Journal of Geophysical Research 96(B4), pp. 6339–6529

    Google Scholar 

  • Vaníček, P., J. Huang, P. Novák, S.D. Pagiatakis, M. Véronneau, Z. Martinec, W.E. Featherstone, (1999). Determination of the boundary values for the Stokes–Helmert problem, Journal of Geodesy 73, pp. 160–192

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blitzkow, D., Matos, A.d., Campos, I., Ellmann, A., Vaníček, P., Santos, M. (2009). An Attempt for an Amazon Geoid Model Using Helmert Gravity Anomaly. In: Sideris, M.G. (eds) Observing our Changing Earth. International Association of Geodesy Symposia, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85426-5_22

Download citation

Publish with us

Policies and ethics