Skip to main content

Recent Advances in Photonic Devices for Optical Super Computing

  • Conference paper
Optical SuperComputing (OSC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5172))

Included in the following conference series:

Abstract

The twentieth century has been the era of semiconductor materials and electronic technology while this millennium is expected to be the age of photonic materials and optical technology. Optical technology has led to countless optical devices that have become indispensable in our daily lives in storage area networks (SANs) [1], parallel processing [2,3], optical switches [4,5], all-optical data networks [6], holographic storage devices [7] and biometric devices at airports [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.rorke.com/med/plasmon-ultra-density-optical.cfm

  2. http://e-collection.ethbib.ethz.ch/ecol-pool/diss/fulltext/eth13546.pdf

  3. Nitta, K., Matoba, O., Yoshimura, T.: An optical parallel processing for multiplier modulo using an optical interferometer. In: SPIE, August 2006, vol. 6311 (2006)

    Google Scholar 

  4. Hamdi, M., Chao, H.J., Blunenthal, D.J., Leonardi, E., Qiao, C., Yun, K.Y.: High-Performance Optical Switches/Routers for High-Speed Internet. IEEE J. on Selected Areas in Communications 21(7) (2003)

    Google Scholar 

  5. http://lw.pennnet.com/articles/article_display.cfm?Section=ARTCL&C=Indus&ARTICLE_ID=229349&KEYWORDS=Glimmerglass

  6. Hinton, K., Farrell, P., Zalesky, A., Andrew, L., Zukerman, M.: Automatic Laser Shutdown Implications for All-Optical Data Networks. J. of Lightwave Technology 24(2) (2006)

    Google Scholar 

  7. Schechter, B., Ross, M.: Leading the Way in Storage, http://domino.watson.ibm.com/comm/wwwr_thinkresearch.nsf/pages/storage297.html

  8. http://www.opticsreport.com/content/article.php?article_id=1014

  9. Abdeldayem, H., Frazier, D.: Optical Computing:Need and Challenge. Communication of the ACM magazine 50(9) (September 2007)

    Google Scholar 

  10. Abdeldayem, H., Paley, M.S., Frazier, D.: An All-Optical Picosecond switch in Polydiacetylene. Applied Physics Letters 82, 1120–1122 (2003)

    Article  Google Scholar 

  11. Smith, P.W., Tomlinson, W.J.: IEEE-Spectrum  18, 26 (1981)

    Google Scholar 

  12. Li, Z., Chen, Z., Li, B.: Optical pulse controlled all-optical logic gates in SiGe/si multimode interference. Optics Express 13(3), 1033 (2005)

    Article  Google Scholar 

  13. Stubkjaer, K.E.: Semiconductor optical amplifier-based all optical gates for high- speed optical processing. IEEE J. Sel. Top. Quantum electron. 6(6), 1428 (2000)

    Article  Google Scholar 

  14. Li, Z., Liu, Y., Zhang, S., Ju, H., de Waardt, H., Khoe, G., Dorren, H., Lenstra, D.: All-optical logic gates using semiconductor optical amplifier assisted by optical filter. Electronics Lett. 41(25) (2005)

    Google Scholar 

  15. Fujisawa, T., Koshiba, M.: All-optical logic gates based on nonlinear slot-waveguide couplers. J. Opt. Soc. Am. B 23(4), 684 (2006)

    Article  Google Scholar 

  16. Zhang, J., Wu, J., Feng, C., Zhou, G., Xu, K., Lin, J.: 40 gbit/s all-optical logic NOR gate based on a semiconductor optical amplifier and a filter. Opt. Eng. 45(8) (2006)

    Google Scholar 

  17. Kang, B.K., Kim, J.H., Byun, Y.T., Lee, S., Jhon, Y.M., Woo, D.H., Yang, J.S., Kim, S.H., Park, Y.H., Yu, B.G.: All-Optical AND Gate Using Probe and Pump Signals as the Multiple Binary Points in Cross Phase Modulation. Jpn. J. Appl. Phys. 41, L568–L570 (2002)

    Article  Google Scholar 

  18. Liang, T.K., Nunes, L.R., Tsuchiya, M., Abedin, K.S., Miyazaki, T., Thourhout, d.V., dumon, P., Baets, R., Tsang, H.K.: All-optical high speed NOR gate based on two photon absorption in silicon wire waveguides. Optical Soc. Am. Annual Meeting (2005)

    Google Scholar 

  19. Scherer, A., Hochberg, M., Baehr-Jones, T.: New All-Optical Modulator Paves the Way to Ultrafast Communications and Computing, http://pr.caltech.edu/media/Press_Releases/PR12901.html

  20. Zaghloul, Y.A., Zaghloul, A.R.M.: Complete all-optical processing polarization-based binary logic gates and optical processors. Optics Express 14(21), 9879 (2006)

    Article  Google Scholar 

  21. Kim, S., Kim, J., Choi, J., Son, C., Ok, S., Byun, Y., Jhon, Y., Lee, S., Woo, D., Kim, S.: SPIE, vol. 5628, p. 94 (2005)

    Google Scholar 

  22. Dong, J., Fu, S., Zhang, X., Shum, P., Huang, D.: All-optical adders based on transient cross phase modulation using a single semiconductor optical amplifier. In: Lee, Y.H., Koyama, F.L. (eds.) SPIE, vol. 6352 (2006)

    Google Scholar 

  23. Glushko, E.Y.: All-optical signal processing in photonic structures with shifting bands. Semiconductor Phys., Q. Elec. & Opto-Elec. 7(4), 343–349 (2004)

    MathSciNet  Google Scholar 

  24. Pei-Li, L., De-xiu, H., Xin-liang, Z., Cuang-xi, Z.: Ultrahigh-speed all-optical half adder based on four wave mixing in semiconductor optical amplifier. Optics Express 14(24), 11839–11847 (2006)

    Article  Google Scholar 

  25. Konishi, T., Oshita, Y., Ichioka, Y.: Ultrafast all-optical processor for time-to-two-dimensional space conversion by using second harmonic generation. In: Proc. SPIE, vol. 4110, pp. 182–189 (2000)

    Google Scholar 

  26. Rosas–Fernández, J.B., Ayotte, S., LaRochelle, S., Penon, J., Rusc, L.A.: A Single All-Optical Processor for Multiple Spectral Amplitude Code Label Recognition Using Four Wave Mixing, http://www.copl.ulaval.ca/publications/uploadPDF/publication_1864.pdf , http://www.copl.ulaval.ca/publications/uploadPDF/publication_1865.pdf

  27. Forghieri, F., Tkach, R.W., Chraplyvy, A.R.: WDM Systems with Unequally spaced Channels. Journal of Lightwave Technology 13, 889–907 (1995)

    Article  Google Scholar 

  28. http://dataweek.co.za/article.aspx?pklArticleId=1678&pklIssueId=46&pklCategoryId=34

  29. http://edition.cnn.com/2003/TECH/ptech/10/31/israel.lenslet.reut/index.html

  30. Tian, M., Grelet, F., Lorgere, I., Galaup, J.-P., Le Gouet, J.-L.: Persistent spectral hole burning in an organic material for temporal pattern recognition. J. Opt. Soc. Am. -B 16, 74–82 (1999), http://www.opticsinfobase.org/abstract.cfm?URI=josab-16-1-74

    Article  Google Scholar 

  31. Munro, P.R.T., Macias-Romero, Ho, G.-H., Eastley, B., Torok, P.: Optical Data Storage, http://www.imperial.ac.uk/research/photonics/pt_group/peter_torok_research_topics_ODS.htm

  32. http://www.opticalstorage.org/article/optical-storage-types/other-types-of-optical-storage.html

  33. Torok”, P.: 1 Terabyte Optical Storage Disks the Size of a DVD, http://www.physorg.com/news1333.html

  34. http://www.physorg.com/news785.html

  35. http://computer.howstuffworks.com/holographic-memory2.htm

  36. Wan, Y., Wang, Y., Jiang, Z., Liu, G., Wang, D., Tao, S., Edward, C.: High-density nonvolatile volume holographic disk storage. In: Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, International (1988) SPIE, Bellingham WA, Etats-Unis (Monographie) (2004), http://cat.inist.fr/?aModele=afficheN&cpsidt=16338253

  37. Schechter, B., Ross, M.: Leading the Way in Storage, http://domino.watson.ibm.com/comm/wwwr_thinkresearch.nsf/pages/storage297.html

  38. http://ohgizmo.com/2005/11/23/maxell-releases-holographic-torage-medium/ , http://www.newlaunches.com/archives/maxell_launches_holographic_storage_16_tb_at_120_mbps.php

  39. http://www.p2pnet.net/story/7929http://www.p2pnet.net/story/7929

  40. Benner, A., Ignatowski, M., Kash, J., Kuchta, D., Ritter, M.: Exploitation of optical interconnects in future server architectures. Powers and Packaging 49(4/5) (2005), http://www.research.ibm.com/journal/rd/494/benner.html

  41. Berger, C., Beyeler, R., Dangel, R., Dellmann, L., Horst, F., Lamprecht, T., Morf, T., Offrein, B.J., Yamada, F., Hasegawa, M., Numata, H., Taira, Y.: Optical Interconnect Demonstrator with Embedded Waveguides and Butt-Coupled Optoelectronic Modules, in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, Technical Digest (Optical Society of America, paper IWD2 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=IP-2005-IWD2

  42. Louri, A., Weech, B., Neocleous, C.: A Spanning Multichannel Linked Hypercube: A Gradually Scalable Optical Interconnection Network for Massively Parallel Computing. IEEE Transactions on Parallel and Distributed Systems 9(5), 497–512 (1998)

    Article  Google Scholar 

  43. Tsai, F.-C.F., O’Brien, C.J., Petrović, N.S., Rakić, A.D.: Analysis of optical channel cross talk for free-space optical interconnects in the presence of higher-order transverse modes. Appl. Opt. 44, 6380–6387 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-30-6380

    Article  Google Scholar 

  44. Aljada, M., Alameh, K.E., Lee, Y.-T., Chung, I.-S.: High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors. Opt. Express 14, 6823–6836 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-15-6823

    Article  Google Scholar 

  45. Naruse, M., Kawazoe, T., Sangu, S., Kobayashi, K., Ohtsu, M.: Optical interconnects based on optical far- and near-field interactions for high-density data broadcasting. Opt. Express 14, 306–313 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-1-306

    Article  Google Scholar 

  46. Milewski, G., Engström, D., Bengtsson, J.: Diffractive optical elements designed for highly precise far-field generation in the presence of artifacts typical for pixelated spatial light modulators. Appl. Opt. 46, 95–105 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=ao-46-1-95

    Article  Google Scholar 

  47. http://www.opticsinfobase.org/abstract.cfm?URI=ao-46-1-95

  48. Anderson, D.: High Gains for Polymer dynamic Holography”. Science 25 277(5325), 530–531 (1997)

    Article  Google Scholar 

  49. Günter, P., Huignard, J.P.: Photorefractive Materials and Their Applications, vol. 1&2. Springer, Berlin (1988 & 1989)

    Google Scholar 

  50. Ducharme, S., Scott, J.C., Twieg, R.J., Moerner, W.E.: Observation of the photorefractive effect in a polymer. Phys. Rev. Lett. 66, 1846–1849 (1991)

    Article  Google Scholar 

  51. Tamura, K., Padias, A.B., Hall Jr, H.K., Peyghambarian, N.: New polymeric material containing the tricyanovinylcarbazole group for photorefractive applications. Appl. Phys. Lett. 60, 1803–1805 (1992)

    Article  Google Scholar 

  52. Cui, Y., Zhang, Y., Prasad, P.N., Schildkraut, J.S., Williams, D.: Photorefractive effect in a new organic system of doped nonlinear polymer. J. Appl. Phys. Lett. 61, 2132–2134 (1992)

    Article  Google Scholar 

  53. Kippelen, B., Tamura, K., Peyghambarian, N., Padias, A.B., Hall Jr., H.K.: Phys. Rev. B 48, 10710–10717 (1992)

    Article  Google Scholar 

  54. Donkers, M.C.J.M., Silence, S.M., Walsh, C.A., Hache, F., Burland, D.M., Moerner, W.E., Twieg, R.J.: Net two-beam-coupling gain in a plymeric photrefravtive material. Opt. Lett. 18, 1044–1046 (1993)

    Article  Google Scholar 

  55. Sandalphon, B.K., Peyghambarian, N., Lyon, S.L., Padias, A.B., Hall Jr., H.K.: New Highly efficient photrefractive polymer composite for optical-storage and image processing applications. Electron. Lett. 29, 1873–1874 (1993)

    Article  Google Scholar 

  56. Liphard, M., Goonesekera, A., Jones, B.E., Ducharme, S., Takacs, J.M., Zhang, L.: High-performance Photorefractive polymers. Science 263, 367–369 (1994)

    Article  Google Scholar 

  57. Meerholz, K., Volodin, B.L., Sandalphon, B.K., Peyghambarian, N.: A photorefractive polymer with high optical gain and diffraction efficiency near 100%. Nature 371, 497 (1994)

    Article  Google Scholar 

  58. Grunnet-Jepesen, A., Thompson, C.L., Moerner, W.E.: Spontaneous Oscillation and Self-Pumped Phase conjugation in a Photorefractive Polymer Optical amplifier. Science 277, 549 (1997)

    Article  Google Scholar 

  59. Breer, S., Buse, K.: Wavelength demultiplexing with volume phase holograms in photorefractive lithium Niobate. Appl. Phys. B. 66(3), 339 (2004)

    Article  Google Scholar 

  60. Yau, H., Pan, E., Wang, P., Chen, J.: Phase Conjugation with Picosecond Pulses in BaTiO3. Opt. Rev. 3(5), 312 (1996)

    Article  Google Scholar 

  61. Yau, H., Pan, E., Wang, P., Chang, C., Cheng, N., Chen, J.: Mechanism for Ultra-Short Phase conjugate Pulse with Photorefractive Crystal. Chinese Journal of Physics 36(6), 791 (1998)

    Google Scholar 

  62. Ryasnyanskii, A.I.: Three-Photon Absorption in Photorefractive BSO and BGO Crystals. J. Appl. Spectr. 71(2), 295 (2004)

    Article  Google Scholar 

  63. Hoogland, S., Sukhovatkin, V., Howard, I., Cauchi, S., Levina, L., Sargent, E.: A solution-processed 1.53 mm quantum dot laser with temperature-invariant emission wavelength. Optics Express 14(8), 3273 (2006), http://www.newscientisttech.com/article/dn9017 , http://www.news.utoronto.ca/bin6/060419-2208.asp

    Article  Google Scholar 

  64. Sazio, P.A., Amezcua-Correa, A., Finlayson, C.E., Hayes, J.R., Scheidemantel, T.J., Baril, N.F., Jackson, B.R., Won, D.J., Zhang, F., Margine, E.R., Gopalan, V., Crespi, V.H., Badding, J.V.: Microstructured Optical Fibers as High-Pressure Microfluidic Reactors. Science 311(5767), 1583 (2006), http://www.sciencemag.org/cgi/content/full/311/5767/1583 , http://www.physorg.com/news81621455.html

    Article  Google Scholar 

  65. Haetty, J., Na, M.H., Chang, H.C., Luo, H., Petrou, A.: Fabrication of flexible monocrystalline ZnSe based foils and membranes. Appl. Phys. Lett. 69(11), 1608 (1996), http://www.buffalo.edu/reporter/vol28/vol28n12/f2.html , http://www.scienceblog.com/community/older/1996/A/199600445.html

    Article  Google Scholar 

  66. http://www.oceanoptics.com/products/evidots.asp

  67. Peyghambarian, N., Norwood, R.A.: Organic Optoelectronics Materials and Devices for Photonic Applications, Part One. Optics & Photonics News 16, 30-35 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=OPN-16-2-30

  68. Peyghambarian, N.P., Norwood, R.A.: Organic Optoelectronics Materials and devices for photonic applications, part II. Optics and Photonics News 16(4), 28 (2005)

    Article  Google Scholar 

  69. Jen, A., Luo, J., Kim, T., et al.: Proc. SPIE 5935, 5935061 (2005)

    Google Scholar 

  70. Li, J., Hu, L., Wang, L., Zhou, Y., Grüner, G., Marks, T.J.: Organic Light-Emitting Diodes Having Carbon Nanotube Anodes. Nano Lett. 6, 2472–2477 (2006)

    Article  Google Scholar 

  71. Luo, J., Haller, M., Ma, H., et al.: J. Phys. Chem. B 108(25), 8523 (2004)

    Google Scholar 

  72. Dalton, B.R., Jen, A., et al.: Proc. SPIE 5935, 5935021 (2005)

    Google Scholar 

  73. Shinar, J.: Organic Light Emitting Diodes. Springer, New York (2004)

    Google Scholar 

  74. Li, Y.Q., Rizzo, A., Cingolani, R., Gigli, G.: Bright White-Light-Emitting Device from Ternary Nanocrystal Composites. Advanced Materials 18(19), 2545 (2006)

    Article  Google Scholar 

  75. Kalinowski, J.: Organic Light Emitting Diodes: Principles, Characteristics and Processes. Marcel Dekker, New York (2005)

    Google Scholar 

  76. Rudmann, H., Shimada, S., Rubner, M.F.: High-efficiencer light-emitting devices based on derivatives of the tris(2,2’-bipyridyl)ruthenium(II) complex. J. Am. Chem. Soc. 124, 4918 (2002)

    Article  Google Scholar 

  77. Bernhard, S., Malliaras, G.G., Abru-a, H.D.: Advanced Materials. Efficient Electroluminescent Devices Based on a Chelated Osmium(II) Complex 14, 433–435 (2002)

    Google Scholar 

  78. Kim, Y.C., Cho, S.H., Song, Y.W., Lee, Y.J., Lee, Y.H., Do, Y.R.: Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes. Appl. Phys. Lett. 89, 173502–173504 (2006)

    Article  Google Scholar 

  79. Friend, R.H., Gymer, R.W., Holmes, A.B., Burroughes, J.H., Marks, R.N., Taliani, C., Bradley, D.D.C., dos Santos, D.A., Brédas, J.L., Lögdlund, M., Salaneck, W.R.: Conjugated Polymer Electroluminescence. Nature 397, 121–128 (1999)

    Article  Google Scholar 

  80. Brédas, J.L., Beljonne, D., Coropceanu, V., Cornil, J.: Charge-Transfer and Energy-Transfer Processes in π-Conjugated Oligomers and Polymers. Chemical Reviews 104, 4971–5004 (2004)

    Article  Google Scholar 

  81. Brédas, J.L., Calbert, J.P., da Silva Filho, D.A., Cornil, J.: Organic Semiconductors: A Theoretical Characterization of the Basic Parameters Governing Charge Transport. Proceedings of the National Academy of Sciences USA 99, 5804–5809 (2002)

    Article  Google Scholar 

  82. Coropceanu, V., Malagoli, M., da Silva Filho, D.A., Gruhn, N.E., Bill, T.G., Brédas, J.L.: Hole- and Electron-Vibrational Couplings in Oligoacene Crystals: Intramolecular Contributions. Physical Review Letters 89, 275503 (2002)

    Article  Google Scholar 

  83. Coropceanu, V., André, J.M., Malagoli, M., Brédas, J.L.: The Role of Vibronic Interactions on Intra- and Inter-Molecular Electron Transfer in π-Conjugated Oligomers. Theoretical Chemistry Accounts 110, 59–69 (2003)

    Google Scholar 

  84. Malagoli, M., Coropceanu, V., da Silva Filho, D.A., Brédas, J.L.: Multimode Analysis of the Gas-Phase Photoelectron Spectra in Oligoacenes. Journal of Chemical Physics 120, 7490–7496 (2004)

    Article  Google Scholar 

  85. Campbell Scott, J.: Conducting polymers:from Novel Science to New Technology. Science 278(5346), 2071–2071 (1997)

    Article  Google Scholar 

  86. Shaw, J.M., Seidler, P.F.: Organic Electronics:Intoduction. IBM Journal of Research and Development 45(1) (2001)

    Google Scholar 

  87. Dimitrakopoulos, C.D., Malenfant, P.R.L.: Organic Thin Film Transistors for Large Area Electronics. Adv. Mater. 14(2) January 16 (2002)

    Google Scholar 

  88. Forrest, S.R.: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004)

    Article  Google Scholar 

  89. Reese, C., Roberts, M., Ling, M., Bao, Z.: Organic thin film transistors. Materials Today 7(9), 20–27 (2004)

    Article  Google Scholar 

  90. Schon, J.H., Kloc, C., Dodabalapur, A., Batlogg, B.: An Organic Solid State Injection Laser. Science 289(5479), 59–601 (2000)

    Article  Google Scholar 

  91. Ono, H., Emoto, A., Kawatsuki, N.: Reconstruction of two-dimensional optical image from nonlocal gratings in a photorefractive mesogenic composite. Optical Materials 27(3), 509–514 (2004)

    Article  Google Scholar 

  92. Huang, Y., Siganakis, G., Moharam, M.G.J., Wu, S.-T.: All-optical display using photoinduced anisotropy in a bacteriorhodopsin film. Opt. Lett. 29, 1933–1935 (2004)

    Article  Google Scholar 

  93. http://www.nanotechwire.com/news.asp?nid=3199&ntid=122&pg=2

  94. May, J.C., Lim, J.H., Biaggio, I., Moonen, N.N.P., Michinobu, T., Diederich, F.: Highly Efficient Third-Order Optical Nonlinearities in Donor-Substituted Cyanoethynylethene Molecules. Opt. Lett. 30, 3057 (2005)

    Article  Google Scholar 

  95. Peyghambarian, N., Dalton, L., Jen, A., Kippelen, B., Marder, S., Norwood, R., Perry, J.W.: NONLINEAR OPTICS: Technological advances brighten horizons for organic nonlinear optics. Laser Focus World, 85–92 (August 2005)

    Google Scholar 

  96. http://physicsweb.org/articles/world/13/8/9

  97. Baba, T.: Remember the light. Nature 1(1), 11–12 (2007)

    Google Scholar 

  98. Weiss, S.M.: Tunable Porous Silicon Photonic Bandgap Structures: Mirrors for Optical Interconnects and Optical Switching. Ph. D. thesis, the institute of optics, school of engineering and applied sciences, University of Rochester (2005)

    Google Scholar 

  99. Song, B.S., Noda, S., Asano, T., Akanane, Y.: Ultra-high-Q photonic double-heterostructure nanocavity. Nature Materials 4, 207–210 (2005)

    Article  Google Scholar 

  100. Srinivasan, K., Barclay, P.e., Painter, O., Chen, J., Cho, A.Y., Gmachl, C.: Experimental demonstration of a high qulity factor photonic crystal microcavity. Appl. Phys. Lett. 83, 1915–1917 (2003)

    Article  Google Scholar 

  101. Yuan, J., Lu, Y.Y.: Photonic bandga caluculations with Dirichlet-t Neumann maps. J. Opt. Soc. Am. A 23, 3217–3222 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-23-12-3217 , http://www.elektrorevue.cz/clanky/2004/0003 , http://www.opticsinfobase.org/abstract.cfm?URI=josaa-23-12-3217

    Article  MathSciNet  Google Scholar 

  102. http://www.elettra.trieste.it/experiments/beamlines/lilit/htdocs/people/luca/tesihtml/node3.html

  103. Argyros, A., Birks, T., Leon-Saval, S., Cordeiro, C.M., Luan, F., Russell, P.S.J.: Photonic bandgap with an index step of one percent. Optics Express 13(1), 309–314 (2005)

    Article  Google Scholar 

  104. Lipson, A., Yeatman, E.: Low-loss one-dimensional photonic band gap filter in (110) silicon. Opt. Lett. 31, 395–397 (2006)

    Article  Google Scholar 

  105. Yeatman, E.M., Lipson, A.: Silicon MEMS for photonic bandgap devices. In: Proc. NSTI Nanotech 2006, Boston, May 7-11, pp. 409–412 (2006)

    Google Scholar 

  106. http://www.techbriefs.com/content/view/152/34

  107. http://www.sandia.gov/media/photonic.htm

  108. Busch, K., John, S.: Liquid-crystal photonic bandgap materials: the tunable electromagnetic vacuum. Phys. Rev. Lett. 83, 967–970 (1999), http://focus.aps.org/story/v4/st7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abdeldayem, H., Frazier, D.O., Witherow, W.K., Banks, C.E., Penn, B.G., Paley, M.S. (2008). Recent Advances in Photonic Devices for Optical Super Computing. In: Dolev, S., Haist, T., Oltean, M. (eds) Optical SuperComputing. OSC 2008. Lecture Notes in Computer Science, vol 5172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85673-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85673-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85672-6

  • Online ISBN: 978-3-540-85673-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics