Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 15))

Included in the following conference series:

Abstract

A novel method of creating models for finite element analysis (FEA) from medical images was proposed in this paper. The CT scanning images of human right hand were imported into a medical image processing software Mimics and the 3D STL model of the bone framework was reconstructed by selecting proper threshold value. A piece of the radius was cut from the bone framework model and remeshed in Magics to obtain triangles with higher quality and optimized quantity. The remeshed radius model was exported into FEA software ANSYS to create the volume mesh, and the unidirectional loading simulation was analyzed. This method eliminates the need for extensive and long time experiments and provides a helpful tool for biomedicine and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pistoia, W., Rietbergen, B.V., Lochmuller, E.M., Lill, C.A., Eckstein, F., Rüegsegger, P.: Estimation of Distal Radius Failure Load with Micro-finite Element Analysis Models Based on Three-Dimensional Peripheral Quantitative Computed Tomography Images. Bone 30(6), 842–848 (2002)

    Article  Google Scholar 

  2. Zannoni, C., Mantovani, R., Viceconti, M.: Material Properties Assignment to Finite Element Models of Bone Structures: A New Method. Medical Engineering & Physics 20, 735–740 (1998)

    Article  Google Scholar 

  3. Cattaneo, P.M., Dalstra, M., Melsen, B.: The Finite Element Method: A Tool to Study Orthodontic Tooth Movement. J. Dent. Res. 84(5), 428–433 (2005)

    Article  Google Scholar 

  4. Su, R., Campbell, G.M., Boyd, S.K.: Establishment of an Architecture-Specific Experimental Validation Approach for Finite Element Modeling of Bone by Rapid Prototyping and High Resolution Computed Tomography. Medical Engineering & Physics 29, 480–490 (2007)

    Article  Google Scholar 

  5. Chevalier, Y., Pahr, D., Allmer, H., Charlebois, M., Zysset, P.: Validation of a Voxel-Based FE Method for Prediction of the Uniaxial Apparent Modulus of Human Trabecular Bone Using Macroscopic Mechanical Tests and Nanoindentation. Journal of Biomechanics 40, 3333–3340 (2007)

    Article  Google Scholar 

  6. MacNeil, J.A., Boyd, S.K.: Bone Strength at the Distal Radius can Be Estimated from High-Resolution Peripheral Quantitative Computed Tomography and the Finite Element Method. Bone 42, 1203–1213 (2008)

    Article  Google Scholar 

  7. Ulrich, D., Rietbergen, B.V., Weinans, H., Rüegsegger, P.: Finite Element Analysis of Trabecular Bone Structure: A Comparison of Image-Based Meshing Techniques. Journal of Biomechanics 31, 1187–1192 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Donald C. Wunsch II Daniel S. Levine Kang-Hyun Jo

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, L., Zhang, J., Ju, S., Tong, A., Fang, M. (2008). A Novel Method of Creating Models for Finite Element Analysis Based on CT Scanning Images. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques. ICIC 2008. Communications in Computer and Information Science, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85930-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85930-7_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85929-1

  • Online ISBN: 978-3-540-85930-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics