Skip to main content

Hardness and Approximability of the Inverse Scope Problem

  • Conference paper
Algorithms in Bioinformatics (WABI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5251))

Included in the following conference series:

Abstract

For a given metabolic network, we address the problem of determining the minimum cardinality set of substrate compounds necessary for synthesizing a set of target metabolites, called the inverse scope problem. We define three variants of the inverse scope problem whose solutions may indicate minimal nutritional requirements that must be met to ensure sustenance of an organism, with or without some side products. Here, we show that the inverse scope problems are NP-hard on general graphs and directed acyclic graphs (DAGs). Moreover, we show that the general inverse scope problem cannot be approximated within n 1/2 − ε for any constant ε> 0 unless P = NP. Our results have direct implications for identifying the biosynthetic capabilities of a given organism and for designing biochemical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagga, J., Gewali, L., Glasser, D.: The complexity of illuminating polygons by alpha-flood-lights. In: Proceedings of the 8th Canadian Conference on Computational Geometry, pp. 337–342 (1996)

    Google Scholar 

  2. Bonarius, H.P.J., Schmid, G., Tramper, J.: Flux analysis of underdetermined metabolic networks: The quest for the missing constraints. Trends Biotechnology 15, 308–314 (1997)

    Article  Google Scholar 

  3. Burchardt, G., Ingram, L.O.: Conversion of xylan to ethanol by ethanologenetic strains of escherichia coli and klebsiella oxytopa. Appl. Environ. Microbiol. 58, 1128–1133 (1992)

    Google Scholar 

  4. Burton, S.G., Cowan, D.A., Woodley, J.M.: The search for ideal biocatalyst. Nature Biotechnology 20, 37–45 (2002)

    Article  Google Scholar 

  5. Duffy, A.D.: Principles of automated theorem proving. Wiley & Sons, Chichester (1991)

    MATH  Google Scholar 

  6. Ebenhöh, O., Handorf, T., Heinrich, R.: Structural analysis of expanding metabolic networks. Genome Informatics 15, 35–45 (2004)

    Google Scholar 

  7. Ebenhöh, O., Handorf, T., Heinrich, R.: A cross species comparison of metabolic network functions. Genome Informatics 16(1), 203–213 (2005)

    Google Scholar 

  8. Ebenhöh, O., Handorf, T., Kahn, D.: Evolutionary changes of metabolic networks and their biosynthetic capacities. IEE Proceedings in Systems Biology 153(5), 354–358 (2006)

    Article  Google Scholar 

  9. Ebenhöh, O., Liebermeister, W.: Structural analysis of expressed metabolic subnetworks. Genome Informatics 17(1), 163–172 (2006)

    Google Scholar 

  10. Handorf, T., Christian, N., Ebenhöh, O., Kahn, D.: An environmental perspective on metabolism. Journal of Theoretical Biology (in press, 2007)

    Google Scholar 

  11. Handorf, T., Ebenhöh, O., Heinrich, R.: Expanding metabolic networks: scopes of compounds, robustness, and evolution. Journal of Molecular Evolution 61(4), 498–512 (2005)

    Article  Google Scholar 

  12. Handorf, T., Ebenhöh, O., Kahn, D., Heinrich, R.: Hierarchy of metabolic compunds based on synthesizing capacity. IEE Proceedings in Systems Biology 153(5), 359–363 (2006)

    Article  Google Scholar 

  13. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)

    Article  Google Scholar 

  14. Jonsson, P.: Near-optimal nonapproximability results for some npo pb-complete problems. Information Processing Letters 68, 249–253 (1997)

    Article  MathSciNet  Google Scholar 

  15. Kompala, D.S., Ramkrishna, D., Jansen, N.B., Tsao, G.T.: Cybernetic modeling of microbial growth on multiple substrates. Biotechnology and Bioengineering 28, 1044–1056 (1986)

    Article  Google Scholar 

  16. Nissen, T.L., Kielland-Brandt, M.C., Nielsen, J., Villadsen, J.: Optimization of ethanol production in saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab. Eng. 2, 69–77 (2000)

    Article  Google Scholar 

  17. Papadimitriou, C., Yannakakis, M.: Optimization, approximation and complexity classes. Journal of Computer and System Science 43, 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Savageau, M.A.: Biochemical systems analysis. i. some mathematical properties of the rate law for the component enzymatic reactions. Journal of Theoretical Biology 25, 365–369 (1969)

    Article  Google Scholar 

  19. Schilling, C.H., Schuster, S., Palsson, B.O., Heinrich, R.: Metabolic pathway analysis: Basic concepts and scientific applications in the post-genomic era. Biotechnol. Prog. 15, 296–303 (1999)

    Article  Google Scholar 

  20. Tsantilil, I.C., Karim, M.N., Klapal, M.I.: Quantifying the metabolic capabilities of engineered zymomonas mobilis using linear programming analysis. Microbial Cell Factories 6(8) (2007)

    Google Scholar 

  21. Wildermuth, M.C.: Metabolic control analysis: biological applications and insights. Genome Biology 1, 1031.1–1031.5 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Keith A. Crandall Jens Lagergren

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nikoloski, Z., Grimbs, S., Selbig, J., Ebenhöh, O. (2008). Hardness and Approximability of the Inverse Scope Problem. In: Crandall, K.A., Lagergren, J. (eds) Algorithms in Bioinformatics. WABI 2008. Lecture Notes in Computer Science(), vol 5251. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87361-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87361-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87360-0

  • Online ISBN: 978-3-540-87361-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics