Skip to main content

From Exploration to Planning

  • Conference paper
Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5163))

Included in the following conference series:

Abstract

Learning and behaviour of mobile robots faces limitations. In reinforcement learning, for example, an agent learns a strategy to get to only one specific target point within a state space. However, we can grasp a visually localized object at any point in space or navigate to any position in a room. We present a neural network model in which an agent learns a model of the state space that allows him to get to an arbitrarily chosen goal via a short route. By randomly exploring the state space, the agent learns associations between two adjoining states and the action that links them. Given arbitrary starting and goal positions, route-finding is done in two steps. First, an activation gradient spreads around the goal position along the associative connections. Second, the agent uses state-action associations to determine the actions leading to ascend the gradient toward the goal. All mechanisms are biologically justifiable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  2. Ungless, M., Magill, P., Bolam, J.: Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303, 2040–2042 (2004)

    Article  Google Scholar 

  3. Tobler, P., Fiorillo, C., Schultz, W.: Adaptive coding of reward value by dopamine neurons. Science 307(5715), 1642–1645 (2005)

    Article  Google Scholar 

  4. Foster, D., Dayan, P.: Structure in the space of value functions. Machine Learning 49, 325–346 (2002)

    Article  MATH  Google Scholar 

  5. Davidson, P., Wolpert, D.: Widespread access to predictive models in the motor system: A short review. Journal of Neural Engineering 2, 8313–8319 (2005)

    Article  Google Scholar 

  6. Iacoboni, M., Wilson, S.: Beyond a single area: motor control and language within a neural architecture encompassing broca’s area. Cortex 42(4), 503–506 (2006)

    Article  Google Scholar 

  7. Miall, R.: Connecting mirror neurons and forward models. Neuroreport 14(16), 2135–2137 (2003)

    Article  Google Scholar 

  8. Oztop, E., Wolpert, D., Kawato, M.: Mirror neurons: Key for mental simulation? In: Twelfth annual computational neuroscience meeting CNS, p. 81 (2003)

    Google Scholar 

  9. Churchland, P.: Self-representation in nervous systems. Science 296, 308–310 (2002)

    Article  Google Scholar 

  10. Plaut, D.C., Kello, C.T.: The emergence of phonology from the interplay of speech comprehension and production: A distributed connectionist approach. In: The emergence of language. B. MacWhinney (1998)

    Google Scholar 

  11. Metta, G., Panerai, F., Manzotti, R., Sandini, G.: Babybot: an artificial developing robotic agent. In: SAB (2000)

    Google Scholar 

  12. Dearden, A., Demiris, Y.: Learning forward models for robots. In: IJCAI, pp. 1440–1445 (2005)

    Google Scholar 

  13. Weber, C.: Self-organization of orientation maps, lateral connections, and dynamic receptive fields in the primary visual cortex. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 1147–1152. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Dorigo, M., Birattari, M., Stützle, T.: Ant colony optimization. Computational Intelligence Magazine, IEEE 1(4), 28–39 (2006)

    Google Scholar 

  15. Witkowski, M.: An action-selection calculus. Adaptive Behavior 15(1), 73–97 (2007)

    Article  Google Scholar 

  16. Schmidhuber, J.: Developmental robotics, optimal artificial curiosity, creativity, music, and the fine arts. Connection Science 18(2), 173–187 (1991)

    Article  Google Scholar 

  17. Herrmann, J., Pawelzik, K., Geisel, T.: Learning predictive representations. Neurocomputing 32-33, 785–791 (2000)

    Article  Google Scholar 

  18. Oudeyer, P., Kaplan, F., Hafner, V., Whyte, A.: The playground experiment: Task-independent development of a curious robot. In: AAAI Spring Symposium Workshop on Developmental Robotics (2005)

    Google Scholar 

  19. Der, R., Martius, G.: From motor babbling to purposive actions: Emerging self-exploration in a dynamical systems approach to early robot development. In: SAB, pp. 406–421. Springer, Berlin (2006)

    Google Scholar 

  20. Foster, D., Morris, R., Dayan, P.: A model of hippocampally dependent navigation, using the temporal difference learning rule. Hippocampus 10, 1–16 (2000)

    Article  Google Scholar 

  21. Van Rullen, R., Thorpe, S.: Rate coding versus temporal order coding: What the retinal ganglion cells tell the visual cortex. Neur. Comp. 13, 1255–1283 (2001)

    Article  MATH  Google Scholar 

  22. Roelfsema, P., van Ooyen, A.: Attention-gated reinforcement learning of internal representations for classification. Neur. Comp. 17, 2176–2214 (2005)

    Article  MATH  Google Scholar 

  23. McCallum, A.: Reinforcement Learning with Selective Perception and Hidden State. PhD thesis, U. of Rochester (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weber, C., Triesch, J. (2008). From Exploration to Planning. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87536-9_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87536-9_76

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87535-2

  • Online ISBN: 978-3-540-87536-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics