Skip to main content

A Hypothesis on How the Neocortex Extracts Information for Prediction in Sequence Learning

  • Conference paper
Advances in Neural Networks - ISNN 2008 (ISNN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5263))

Included in the following conference series:

  • 3036 Accesses

Abstract

From the biological view, each component of a temporal sequence is represented by neural code in cortical areas of different orders. In whatever order areas, minicolumns divide a component into sub-components and parallel process them. Thus a minicolumn is a functional unit. Its layer IV neurons form a network where cell assemblies for sub-components form. Then layer III neurons are triggered and feed back to layer IV. Considering the delay, through Hebbian learning the connections from layer III to layer IV can associate a sub-component to the next. One sub-component may link multiple following sub-components plus itself, but the prediction is deterministic by a mechanism involving competition and threshold dynamic. So instead of learning the whole sequence, minicolumns selectively extract information. Information for complex concepts are distributed in multiple minicolumns, and long time thinking are in the form of integrated dynamics in the whole cortex, including recurrent activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sun, R., Giles, L.C.: Sequence Learning: From Recognition and Prediction to Sequential Decision Making. IEEE Intell. Syst. 16, 67–70 (2001)

    Article  Google Scholar 

  2. Wang, D., Arbib, A.M.: Complex Temporal Sequence Learning Based on Short-term Memory. Proc. IEEE 78, 1536–1543 (1990)

    Article  Google Scholar 

  3. Wang, D., Yuwono, B.: Anticipation-Based Temporal Pattern Generation. IEEE Trans. Syst. Man Cybern. 25, 615–628 (1995)

    Article  Google Scholar 

  4. Wang, D., Yuwono, B.: Incremental Learning of Complex Temporal Patterns. IEEE Trans. Neural Networks 7, 1465–1481 (1996)

    Article  Google Scholar 

  5. Starzyk, A.J., He, H.: Anticipation-Based Temporal Sequences Learning in Hierarchical Structure. IEEE Trans. Neural Networks 18, 344–358 (2007)

    Article  Google Scholar 

  6. Squire, R.L., Zola, M.S.: The Medial Temporal Lobe Memory System. Science 253, 1380–1386 (1991)

    Article  Google Scholar 

  7. Thompson, F.R., Kim, J.J.: Memory systems in the brain and localization of a memory. PNAS 93, 13438–13444 (1996)

    Article  Google Scholar 

  8. Mayes, A., Montaldi, D., Migo, E.: Associative Memory and the Medial Temporal Lobes. Trends Cogn. Sci. 11, 126–135 (2007)

    Article  Google Scholar 

  9. Creutzfeldt, D.O.: Cortex Cerebri: Performance, Structural and Functional Organization of the Cortex. Oxford University Press, USA (1995)

    Google Scholar 

  10. Mountcastle, B.V.: The Columnar Organization of the Neocortex. Brain 120, 701–722 (1997)

    Article  Google Scholar 

  11. Rumelhart, D.E., McClelland, J.L.: The PDP Research Group: Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Foundations, vol. 1. MIT Press, Cambridge (1986)

    Google Scholar 

  12. McClelland, J.L., Rumelhart, D.E.: The PDP Research Group: Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Psychological and Biological Models, vol. 2. MIT Press, Cambridge (1986)

    Google Scholar 

  13. Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949)

    Google Scholar 

  14. Korner, E., Gewaltig, O.M., Korner, U., Richter, A., Rodemann, T.: A model of computation in neocortical architecture. Neural Networks 12, 989–1005 (1999)

    Article  Google Scholar 

  15. Bliss, P.V.T., Collingridge, L.G.: A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993)

    Article  Google Scholar 

  16. Bear, F.M.: A synaptic basis for memory storage in the cerebral cortex. PNAS 93, 13453–13459 (1996)

    Article  Google Scholar 

  17. Chen, R.W., Lee, S., Kato, K., Spencer, D.D., Shepherd, M.G., Williamson, A.: Long-term modifications of synaptic efficacy in the human inferior and middle temporal cortex. PNAS 93, 8011–8015 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, W. (2008). A Hypothesis on How the Neocortex Extracts Information for Prediction in Sequence Learning. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds) Advances in Neural Networks - ISNN 2008. ISNN 2008. Lecture Notes in Computer Science, vol 5263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87732-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87732-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87731-8

  • Online ISBN: 978-3-540-87732-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics