Skip to main content

Efficient Broadcasting in Known Geometric Radio Networks with Non-uniform Ranges

  • Conference paper
Distributed Computing (DISC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5218))

Included in the following conference series:

Abstract

We study here deterministic broadcasting in geometric radio networks (GRN) whose nodes have complete knowledge of the network. Nodes of a GRN are deployed in the Euclidean plane (R 2) and each of them can transmit within some range r assigned to it. We adopt model in which ranges of nodes are non-uniform and they are drawn from the predefined interval 0 ≤ r min  ≤ r max . All our results are in the conflict-embodied model where a receiving node must be in the range of exactly one transmitting node in order to receive the message.

We derive several lower and upper bounds on the time of deterministic broadcasting in GRNs in terms of the number of nodes n, a distribution of nodes ranges, and the eccentricity D of the source node (i.e., the maximum length of a shortest directed path from the source node to another node in the network). In particular:

(1) We show that D + Ω(log(n − D)) rounds are required to accomplish broadcasting in some GRN where each node has the transmission range set either to 1 or to 0. We also prove that the bound D + Ω(log(n − D)) is almost tight providing a broadcasting procedure that works in this type of GRN in time D + O(logn).

(2) In GRNs with a wider choice of positive node ranges from r min , ...,r max , we show that broadcasting requires \(D+\Omega (\min\{\log {\frac {r_{max}}{r_{min}}},\log (n-D)\})\) rounds and that it can be accomplished in \(O (D\log^2 \frac {r_{max}} {r_{min}})\) rounds subsuming the best currently known upper bound \(O (D (\frac {r_{max}} {r_{min}})^4)\) provided in [15].

(3) We also study the problem of simulation of minimum energy broadcasting in arbitrary GRNs. We show that energy optimal broadcasting that can be completed in h rounds in a conflict-free model may require up to h/2 additional rounds in the conflict-embodied model. This lower bound should be seen as a separation result between conflict-free and conflict-embodied geometric radio networks. Finally, we also prove that any h-hop broadcasting algorithm with the energy consumption \({\cal E}\) in a GRN can be simulated within O(hlogψ) rounds in the conflict-embodied model using energy \(O({\cal E})\), where ψ is the ratio between the largest and the shortest Euclidean distance between a pair of nodes in the network.

Research supported in part by VR grant 621-2005-4085 and The Royal Society International Joint Project, IJP - 2006/R2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. Journal of Computer and System Sciences 43, 290–298 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambühl, C.: An optimal bound for the MST algorithm to compute energy efficient broadcast trees in wireless networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1139–1150. Springer, Heidelberg (2005)

    Google Scholar 

  3. Ambühl, C., Clementi, A.E.F., Di Ianni, M., Lev-Tov, N., Monti, A., Peleg, D., Rossi, G., Silvestri, R.: Efficient Algorithms for Low-Energy Bounded-Hop Broadcast in Ad-Hoc Wireless Networks. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 418–427. Springer, Heidelberg (2004)

    Google Scholar 

  4. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time complexity of broadcast in radio networks: an exponential gap between determinism and randomization. J. of Computer and System Sciences 45, 104–126 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bruschi, D., Del Pinto, M.: Lower bounds for the broadcast problem in mobile radio networks. Distributed Computing 10, 129–135 (1997)

    Article  Google Scholar 

  6. Chen, J., Jiang, A., Kanj, I.A., Xia, G., Zhang, F.: Separability and Topology Control of Quasi Unit Disk Graphs. In: Proc. 26th IEEE International Conference on Computer Communications INFOCOM 2007, pp. 2225–2233 (2007)

    Google Scholar 

  7. Chlamtac, I., Kutten, S.: On broadcasting in radio networks - problem analysis and protocol design. IEEE Transactions on Communication 33, 1240–1246 (1985)

    Article  MATH  Google Scholar 

  8. Chlamtac, I., Weinstein, O.: The wave expansion approach to broadcasting in multihop radio networks. IEEE Transactions on Communication 39, 426–433 (1991)

    Article  Google Scholar 

  9. Chlebus, B.S., Gąsieniec, L., Gibbons, A.M., Pelc, A., Rytter, W.: Deterministic broadcasting in unknown radio networks. Distributed Computing 15, 27–38 (2002)

    Article  Google Scholar 

  10. Chlebus, B.S., Gąsieniec, L., Östlin, A., Robson, J.M.: Deterministic radio broadcasting. In: Welzl, E., Montanari, U., Rolim, J. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 717–728. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Clementi, A.E.F., Crescenzi, P., Penna, P., Rossi, G., Vocca, P.: On the complexity of computing minimum energy consumption broadcast subgraphs. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 121–131. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Clementi, A.E.F., Huiban, G., Penna, P., Rossi, G., Verhoeven, Y.C.: Some Recent Theoretical Advances and Open Questions on Energy Consumption in Ad-Hoc Wireless Networks. In: Proc. 3rd Workshop on Approximation and Randomization Algorithms in Communication Networks ARACNE 2002, pp. 23–38 (2002)

    Google Scholar 

  13. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes, and broadcasting on unknown radio networks. In: Proc. 12th Ann. ACM-SIAM Symp. on Discrete Algorithms, SODA 2001, pp. 709–718 (2001)

    Google Scholar 

  14. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. In: Proc. 44th Symp. on Foundations of Computer Science, FOCS 2003, pp. 492–501 (2003)

    Google Scholar 

  15. Dessmark, A., Pelc, A.: Broadcasting in geometric radio networks. J. of Discrete Algorithms 5(1), 187–201 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Elkin, M., Kortsarz, G.: An improved algorithm for radio broadcast. ACM Trans. on Algorithms 3(1), 1–21 (2007)

    Article  MathSciNet  Google Scholar 

  17. Emek, Y., Gąsieniec, L., Kantor, E., Pelc, A., Peleg, D., Su, C.: Broadcasting in UDG radio networks with unknown topology. In: Proc. 26th Annual ACM Symposium on Principles of Distributed Computing PODC 2007, pp. 195–204 (2007)

    Google Scholar 

  18. Emek, Y., Kantor, E., Peleg, D.: On the effect of the deployment setting on broadcasting in Euclidean radio networks. In: Proc. 27th Annual ACM Symposium on Principles of Distributed Computing PODC 2008 (to appear, 2008)

    Google Scholar 

  19. Flammini, M., Klasing, R., Navarra, A., Perennes, S.: Improved approximation results for the minimum energy broadcasting problem. In: Proc. Joint Work. on Foundations of Mobile Computing DIALM-POMC 2004, pp. 85–91. ACM Press, New York (2004)

    Chapter  Google Scholar 

  20. Fusco, E., Pelc, A.: Broadcasting in UDG radio networks with missing and inaccurate information. In: Proc. 22nd International Symposium on Distributed Computing, DISC 2008 (to appear, 2008)

    Google Scholar 

  21. Gaber, I., Mansour, Y.: Centralized broadcast in multihop radio networks. Journal of Algorithms 46, 1–20 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  23. Gąsieniec, L., Kantor, E., Kowalski, D.R., Peleg, D., Su, C.: Energy and Time Efficient Broadcasting in Known Topology Radio Networks. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 253–267. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Gąsieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology radio networks. Distributed Computing 19(4), 289–300 (2007)

    Article  Google Scholar 

  25. Gąsieniec, L., Potapov, I., Xin, Q.: Time efficient centralized gossiping in radio networks. Theoretical Computer Science 383(1), 45–58 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kirousis, L.M., Kranakis, E., Krizanc, D., Pelc, A.: Power Consumption in Packet Radio Networks. Theoretical Computer Science 243, 289–305 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Klasing, R., Navarra, A., Papadopoulos, A., Perennes, S.: Adaptive broadcast consumption (ABC), a new heuristic and new bounds for the minimum energy broadcast routing problem. In: Mitrou, N.M., Kontovasilis, K., Rouskas, G.N., Iliadis, I., Merakos, L. (eds.) NETWORKING 2004. LNCS, vol. 3042, pp. 866–877. Springer, Heidelberg (2004)

    Google Scholar 

  28. Kowalski, D.R., Pelc, A.: Optimal deterministic broadcasting in known topology radio networks. Distributed Computing 19(3), 185–195 (2007)

    Article  Google Scholar 

  29. Kuhn, F., Zollinger, A.: Ad-hoc networks beyond unit disk graphs. In: Proc. DIALM-POMC Joint Workshop on Foundations of Mobile Computing 2003, pp. 69–78 (2003)

    Google Scholar 

  30. Kushilevitz, E., Mansour, Y.: An Ω (D log(N/D)) lower bound for broadcast in radio networks. SIAM J. on Computing 27, 702–712 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Moscibroda, T., Wattenhofer, R.: Maximal independent sets in radio networks. In: Proc. 24th ACM Symp. on Principles of Distributed Computing PODC 2005, pp. 148–157 (2005)

    Google Scholar 

  32. Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio networks. In: Proc. 17th ACM Symp. on Parallel Algorithms SPAA 2005, pp. 39–48 (2005)

    Google Scholar 

  33. Lauer, G.S.: Packet radio routing. In: Streenstrup, M. (ed.) Routing in communication networks, ch. 11, pp. 351–396. Prentice-Hall, Englewood Cliffs (1995)

    Google Scholar 

  34. Navarra, A.: Tighter bounds for the minimum energy broadcasting problem. In: Proc. 3rd International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks WiOpt 2005, pp. 313–322. IEEE CS, Los Alamitos (2005)

    Chapter  Google Scholar 

  35. Peleg, D.: Recent Advances on Approximation Algorithms for Minimum Energy Range Assignment Problems in Ad-Hoc Wireless Networks. In: Erlebach, T. (ed.) CAAN 2006. LNCS, vol. 4235, pp. 1–4. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  36. Ravishankar, K., Singh, S.: Broadcasting on [0,L]. Discrete Applied Mathematics 53, 299–319 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  37. Sen, A., Huson, M.L.: A new model for Scheduling Packet Radio Networks. In: Proc. 15th Annual Joint Conference of the IEEE Computer and Communication Societies INFOCOM 1996, pp. 1116–1124 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gadi Taubenfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gąsieniec, L., Kowalski, D.R., Lingas, A., Wahlen, M. (2008). Efficient Broadcasting in Known Geometric Radio Networks with Non-uniform Ranges. In: Taubenfeld, G. (eds) Distributed Computing. DISC 2008. Lecture Notes in Computer Science, vol 5218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87779-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87779-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87778-3

  • Online ISBN: 978-3-540-87779-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics