Skip to main content

Continental Collision and the STEP-wise Evolution of Convergent Plate Boundaries: From Structure to Dynamics

  • Conference paper
Subduction Zone Geodynamics

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

Particularly interesting stages in the evolution of subduction zones are the two main transient stages: initiation and termination. In this contribution the focus is on the second of these: terminal stage subduction, often triggered by continental collision or arc-continent collision. The landlocked basin setting of the Mediterranean region, in particular the western-central Mediterranean, provides unique opportunities to study terminal stage subduction and its consequences

We use seismic tomography results on lithosphere and upper mantle structure as a source of information on plate boundary structure, and concentrate on the lithospheric scale aspects. Combining this structural information with process-oriented numerical modelling studies and regional observations, we present a 3D model for convergent plate boundary evolution after collision, in which slab detachment and the formation of tear or STEP (Subduction-Transform-Edge-Propagator) faults are key elements. A STEP fault laterally decouples subducting lithosphere from non-subducting litho-sphere in a scissor type of fashion. It enhances the ability of a slab to retreat through the mantle fl ow around the edge of the subducted slab. In this way collision and back-arc extension may occur in close proximity. In our study area this specifically pertains to collision along the north African margin, STEP formation in easterly direction, CCW rotation of the southern Apennines slab and the opening of the Tyrrhenian Sea. Vertical tearing of subducted lithosphere may play an important role as well, but is probably not crucial. On the basis of the good agreement between the Mediterranean-based model and the evolution of the Tonga-Fiji region we expect that the model may shed light on other complex convergent plate boundary regions, as well.

In summary: Upon continental (or arc-continent) collision, along-trench variations in lithospheric properties of the subducting lithosphere may lead to disruption and segmentation of the subduction system. Following slab detachment along limited segments of a convergent plate boundary, the development of STEP faults is expected. These faults contribute to an increase in arc curvature within plate boundary segments. This contributes to the sinuous geometry of long subduction systems such as in the western and southwest Pacifi c.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Argand E (1924) La tectonique de l'Asie. Comptes-rendu du XIIIe Congrès géologique international: 170–372

    Google Scholar 

  • Auzende JM, Bonnin J, Olivet JL (1973) The origin of the western Mediterranean basin. J. Geol. Soc. London 129: 607–620.

    Article  Google Scholar 

  • Bellahsen N, Faccenna C, Funiciello F (2005) Dynamics of subduction and plate motion in laboratory experiments: Insights into the “plate tectonics” behavior of the Earth. J. Geophys. Res. 110: (B01401): doi:10.1029/2004JB002999.

    Google Scholar 

  • Bevis M, et al. (1995) Geodetic observations of very rapid convergence and back-arc extension at the Tonga arc. Nature 374: 249–251.

    Article  Google Scholar 

  • Bijwaard H, Spakman W (2000) Nonlinear global P-wave tomography by iterated linearised inversion. Geophys. J. Int. 141: 71–82.

    Article  Google Scholar 

  • Brudzinski M, Chen WP (2003) A petrological anomaly accompanying outboard earthquakes beneath Fiji-Tonga: Corresponding evidence from broadband P and S waveforms. J. Geophys. Res. 108: (B6, 2299): doi:10.1029/2002JB002012.

    Google Scholar 

  • Buiter SJH, Govers R, Wortel MJR (2002) Two-dimensional simulations of surface deformation caused by slab detachment. Tectonophysics 354(3–4): 195–210.

    Article  Google Scholar 

  • Carminati, E, Wortel MJR (2000) Subduction zone rollback in 4D: The Langhian to Recent evolution of the Africa-Eurasia plate boundary in the central Mediterranean. Abstracts from XXV General Assembly of the European Geophysical Society, Nice (France), April 2000.

    Google Scholar 

  • Carminati E, Wortel MJR, Spakman W, Sabadini R (1998) The role of slab detachment processes in the opening of the western-central Mediterranean basins: Some geological and geophysical evidence. Earth Planet. Sci. Lett. 160(3–4): 651–665.

    Article  Google Scholar 

  • Chen WP, Brudzinski MR (2001) Evidence for a large-scale remnant of subducted lithosphere beneath Fiji. Science 292: 2475–2479.

    Article  Google Scholar 

  • Coulon C et al. (2002) Post-collisional transition from calc-alkaline to alkaline volcanism during the Neogene in Oranie (Algeria): Magmatic expression of a slab breakoff. Lithos 62: 87–110.

    Article  Google Scholar 

  • Davies JH, von Blanckenburg F (1995) Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett. 129: 85–102.

    Article  Google Scholar 

  • de Boorder H, Spakman W, White SH, Wortel MJR (1998) Late Cenozoic mineralization, orogenic collapse and slab detachment in the European Alpine Belt. Earth Planet. Sci. Lett. 164(3–4): 569–575.

    Article  Google Scholar 

  • Dewey JF, Helman ML, Turco E, Hutton DHW, Knott SD (1989) Kinematics of the western Mediterranean, in Coward MP, Dietrich D, Park RG (Eds.) Alpine Tectonics, Geol. Soc. Lond. Spec. Publ. 45: 265–283.

    Article  Google Scholar 

  • Doglioni C, Gueguen E, Sàbat F, Fernandez M (1997) The western Mediterranean extensional basins and the Alpine orogen. Terra Nova 9: 109–112.

    Article  Google Scholar 

  • Doglioni C, Carminati E, Cuffaro M, Scrocca D (2007) Subduction kinematics and dynamic constraints. Earth-Sci. Rev. 83: 125–175.

    Article  Google Scholar 

  • Dvorkin J, Nur A, Mavko G., Ben-Avraham Z (1993) Narrow subducting slabs and the origin of backarc basins. Tectonophysics 227: 63–79.

    Article  Google Scholar 

  • Elsasser WM (1971) Sea-fl oor spreading as thermal convection. J. Geophys. Res. 76: 1101–1112.

    Article  Google Scholar 

  • Faccenna C, Becker TW, Lucente FP, Jolivet L, Rossetti F (2001a) History of subduction and back-arc extension in the central Mediterranean. Geophys. J. Int. 145: 809–820.

    Article  Google Scholar 

  • Faccenna C, Funiciello F, Giardini D, Lucente P (2001b) Episodic back-arc extension during restricted mantle convection in the Central Mediterranean. Earth Planet. Sci. Lett. 187(1–2): 105–116.

    Article  Google Scholar 

  • Faccenna C, Piromallo C, Crespo-Blanc A, Jolivet L, Rossetti F (2004) Lateral slab deformation and the origin of the western Mediterranean arcs. Tectonics, 23: TC1012, doi:10.1029/2002TC001488.

    Article  Google Scholar 

  • Ferrari L (2004) Slab detachment control on mafi c volcanic pulse and mantle heterogeneity in central Mexico. Geology 32: 77–80.

    Article  Google Scholar 

  • Funiciello F, Faccenna C, Giardini D, Regenauer-Lieb K(2003) Dynamics of retreating slabs: 2. Insights from three-dimensional laboratory experiments. J. Geophys. Res. 108(B4, 2207): doi:10.1029/2001JB000896.

    Google Scholar 

  • Gerya T, Yuen DA, Maresch WV (2004) Thermomechanical modelling of slab detachment. Earth Planet. Sci. Lett. 226: 101–116.

    Article  Google Scholar 

  • Giardini D, Velonà M (1991) The deep seismicity of the Tyrrhenian Sea. Terra Nova 3: 57–64.

    Article  Google Scholar 

  • Govers R, Wortel MJR (2005) Lithosphere tearing at STEP faults: Response to edges of subduction zones. Earth Planet. Sci. Lett. 236: 505–523.

    Article  Google Scholar 

  • Hall R (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacifi c: Computer-based reconstructions, model and animations. J. Asian Earth Sci. 20: 353–431.

    Article  Google Scholar 

  • Huchon P, Lyberis N, Angelier J, Le Pichon X, Renard V (1982) Tectonics of the Hellenic trench: A synthesis of sea-beam and submersible observations. Tectonophysics 86: 69–112.

    Article  Google Scholar 

  • Isacks B, Oliver, J, Sykes LR (1968) Seismology and the new global tectonics. J. Geophys. Res. 73: 5855–5899.

    Article  Google Scholar 

  • Jolivet L, Faccenna C (2000) Mediterranean extension and the African-Eurasian collision. Tectonics 19: 1095–1106.

    Article  Google Scholar 

  • Karig DE (1971) Origin and development of marginal basins in the Western Pacifi c. J. Geophys. Res. 76: 2542–2561.

    Article  Google Scholar 

  • Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the Earth from travel times. Geophys. J. Int. 122: 108–124.

    Article  Google Scholar 

  • Kohn MJ, Parkinson CD (2002) Petrologic case for Eocene slab breakoff during the India-Asian collision. Geology 30: 591–594.

    Article  Google Scholar 

  • Le Pichon X (1982) Land-locked oceanic basins and continental collision: The eastern Mediterranean as a case example. In: Hsu K (ed), Mountain Building Processes Academic Press, London, pp. 201–211.

    Google Scholar 

  • Lonergan L, White N (1997) Origin of the Betic-Rif mountain belt. Tectonics 16: 504–522.

    Article  Google Scholar 

  • Lucente FP, Chiarabba C, Cimini GB, Giardini D (1999) Tomographic constraints on the geodynamic evolution of the Italian region. J. Geophys. Res. 104: 20307–20327.

    Article  Google Scholar 

  • Malinverno A, Ryan WBF (1986) Extension in the Tyrrhenian Sea and shortening in the Apennines as a result of arc migration driven by sinking of the lithosphere. Tectonics 5: 227–245.

    Article  Google Scholar 

  • Maury RC et al. (2000) Post-collisional Neogene magmatism of the Mediterranean Maghreb margin: A consequence of slab breakoff. C.R. Acad. Sci. Paris/Earth Planet. Sci. 331: 159–173.

    Google Scholar 

  • McClusky S et al. (2000) Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res. 105(B3): 5695–5719.

    Google Scholar 

  • Millen DW, Hamburger MW (1998) Seismological evidence for tearing of the Pacifi c plate at the northern termination of the Tonga subduction zone. Geology 26: 659–662.

    Article  Google Scholar 

  • Miller MS, Kennett BLN, Lister GS (2004) Imaging changes in morphology, geometry, and physical properties of the subducting Pacifi c plate along the Izu-Bonin-Mariana arc. Earth Planet. Sci. Lett. 224: 363–370.

    Article  Google Scholar 

  • Morra G, Regenauer-Lieb K, Giardini D (2006) Curvature of oceanic arcs. Geology 34: 877–880.

    Article  Google Scholar 

  • Parson LM, Hawkins JW (1994) Two-stage ridge propagation and the geological history of the Lau backarc basin. Proc. Ocean Drill. Program Sci. Results 135: 819–828.

    Google Scholar 

  • Peccerillo A (2005) Plio-Quaternary volcanism in Italy. Springer, Berlin, Heidelberg, New York: 365 pp.

    Google Scholar 

  • Pelletier B, Auzende JM (1996) Geometry and structure of the Vitiaz Trench linament (SW Pacifi c). Mar. Geophys. Res. 18: 305–335.

    Article  Google Scholar 

  • Piromallo C, Morelli A (2003) P wave tomography of the mantle under the Alpine-Medieterranean area. J. Geophys. Res. 108(B2, 2065): doi:10.1029/2002JB001757.

    Google Scholar 

  • Rehault J-P, Boillot G, Mauffret A (1984) The Western Mediterranean basin geological evolution. Mar. Geol. 55: 447–477.

    Article  Google Scholar 

  • Royden LH (1993) The evolution of retreating subduction boundaries formed during continental collision. Tectonics 12: 629–638.

    Article  Google Scholar 

  • Schellart WP (2004) Kinematics of subduction and subduction-induced fl ow in the upper mantle. J. Geophys. Res. 109(B07401): doi:10.1029/2004JB002970.

    Google Scholar 

  • Schellart WP, Jessell MW, Lister GS (2003) Asymmetric deformation in the backarc region of the Kuril arc, northwest Pacifi c: New insights from analogue modeling. Tectonics 22(5, 10047): doi:10.1029/2002TC001473.

    Google Scholar 

  • Schellart WP, Lister GS, Toy VG (2006) A Late cretaceous and Cenozoic reconstruction of the southwest Pacifi c region: Tectonics controlled by subduction and slab rollback proocesses. Earth-Sci. Rev. 76: 191–233.

    Article  Google Scholar 

  • Schellart WP, Freeman J, Stegman DR, Moresi L, May D (2007). Evolution and diversity of subduction zones controlled by slab width. Nature 446: doi:10.1038/nature05615.

    Google Scholar 

  • Schettino A, Turco E (2006) Plate tectonics of the western Mediterranean region during the Oligocene and early Miocene. Geophys J. Int. 166: 1398–1423.

    Article  Google Scholar 

  • Spakman W, Wortel R (2004) A tomographic view on western Mediterranean geodynamics. In: Cavazza W et al. (Eds): The TRANSMED Atlas: The Mediterranean region from crust to mantle, Springer, Berlin, Heidelberg, New York, pp. 31–52.

    Chapter  Google Scholar 

  • Spakman W, Wortel MJR, Vlaar NJ (1988) The Hellenic subduction zone: A tomographic image and its geodynamic implications. Geophys. Res. Lett. 15: 60–63.

    Article  Google Scholar 

  • Spakman W, van der Lee S, van der Hilst R (1993) Travel-time tomography of the European-Mediterranean mantle down to 1400 km. Phys. Earth Planet. Int. 79: 3–74.

    Article  Google Scholar 

  • Stegman DR, Freeman J, Schellart WP, Moresi L, May D (2006) Infl uence of trench width on subduction hinge retreat rates in 3-D model of rollback. Geochem. Geophys. Geosyst. 7(Q03012): doi:1029/2005GC001056.

    Google Scholar 

  • van de Zedde DMA, Wortel MJR (2001) Shallow slab detachment as a transient source of heat at midlithospheric depths. Tectonics 20: 868–882.

    Article  Google Scholar 

  • Wortel MJR, Spakman W (1992) Structure and dynamics of subducted lithosphere in the Mediterranean region. Proc. K. Ned. Akad. Wet. 95: 325–347.

    Google Scholar 

  • Wortel MJR, Spakman W (2000) Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290: 1910–1917.

    Article  Google Scholar 

  • Wortel MJR, van Bergen MJ, van de Zedde DMA, Spakman W (2003) Continental collision, slab detachment and K-rich magmatism: Central-southern Italy as a type example. Abstracts from EGS — AGU — EUG Joint Assembly, Nice (France), April 2003.

    Google Scholar 

  • Wortel MJR, Spakman W, Govers R (2006) Deep structure and evolution of the Cyprus Arc, Abstracts from EGU, Vienna, Austria, April 2006.

    Google Scholar 

  • Yoshioka S, Wortel MJR (1995) Three-dimensional numerical modeling of detachment of subducted lithosphere. J. Geophys. Res. 100: 20223–20244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wortel, R., Govers, R., Spakman, W. (2009). Continental Collision and the STEP-wise Evolution of Convergent Plate Boundaries: From Structure to Dynamics. In: Lallemand, S., Funiciello, F. (eds) Subduction Zone Geodynamics. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87974-9_3

Download citation

Publish with us

Policies and ethics