Skip to main content

Designing Interactive and Intelligent Control for Rehabilitation Robots

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5315))

Included in the following conference series:

  • 4183 Accesses

Abstract

The control system design for rehabilitation robotics requires certain special considerations: interactive nature with highly adaptive neural muscular system of a human user, ability to accommodate spastic and slow responses from patients with neurological disorders, and less stringent accuracy and precision specifications. In developing a control scheme for the Robotic Assisted Upper Extremity Repetitive Therapy (RUPERTTM), we reviewed and implemented an interactive and adaptive control structure that satisfies the special consideration and also takes advantage of the less stringent performance specifications. The RUPERTTM is developed to provide a low cost, safe, easy-to-use robotic-device to assist the patient and therapist to achieve more systematic therapy at home or in the clinic. Because the device is wearable and lightweight, it can be worn standing or sitting or even walking around, providing therapy tasks that better mimic activities of daily living.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jenkins, W.M., Merzenich, M.M.: Reorganization of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke. Prog. Brain Res. 71, 249–266 (1987)

    Article  Google Scholar 

  2. Nudo, R.J., Milliken, G.W.: Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J. Neurophysiol 75, 2144–2149 (1996)

    Google Scholar 

  3. Nudo, R.J., Milliken, G.W., Jenkins, W.M., Merzenich, M.M.: Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J. Neurosci. 16, 785–807 (1996)

    Google Scholar 

  4. Nudo, R.J., Plautz, E.J., Frost, S.B.: Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 24, 1000–1019 (2001)

    Article  Google Scholar 

  5. Nudo, R.J., Wise, B.M., SiFuentes, F., Milliken, G.W.: Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272, 1791–1794 (1996)

    Article  Google Scholar 

  6. Pons, T.P., Garraghty, P.E., Ommaya, A.K., Kaas, J.H., Taub, E., Mishkin, M.: Massive cortical reorganization after sensory deafferentation in adult macaques. Science 252, 1857–1860 (1991)

    Article  Google Scholar 

  7. Reinkensmeyer, D., Lum, P., Winters, J.: Emerging Technologies for Improving Access to Movement Therapy following Neurologic Injury Emerging and Accessible Telecommunications. In: Winters, J., Robinson, C., Simpson, R., Vanderheiden, G. (eds.) Information and Healthcare Technologies - Emerging Challenges in Enabling Universal Access. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  8. van der Lee, J.H., Wagenaar, R.C., Lankhorst, G.J., Vogelaar, T.W., Deville, W.L., Bouter, L.M.: Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke 30, 2369–2375 (1999)

    Google Scholar 

  9. Koeneman, E.J., Schultz, R.S., Wolf, S.L., Herring, D.E., Koeneman, J.B.: A pneumatic muscle hand therapy device. In: The 26th Annual International Conference of the IEEE EMBS, San Francisco, CA (presented 2004)

    Google Scholar 

  10. Bharadwaj, K., Sugar, T.G., Koeneman, J.B., Koeneman, E.J.: Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation. J. Biomech. Eng. 127, 1009–1013 (2005)

    Article  Google Scholar 

  11. Levin, M.F.: Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain 119(Pt 1), 281–293 (1996)

    Article  Google Scholar 

  12. Hogan, N., Bizzi, E., Mussa-Ivaldi, F.A., Flash, T.: Controlling multijoint motor behavior. Exerc. Sport. Sci. Rev. 15, 153–190 (1987)

    Article  Google Scholar 

  13. Lemay, M.A., Hogan, N., van Dorsten, J.W.: Issues in impedance selection and input devices for multijoint powered orthotics. IEEE Trans. Rehabil. Eng. 6, 102–105 (1998)

    Article  Google Scholar 

  14. Caldwell, D.G., Tsagarakis, N.: Biomimetic actuators in prosthetic and rehabilitation applications. Technol. Health Care 10, 107–120 (2002)

    Google Scholar 

  15. Klute, G.K., Czerniecki, J.M., Hannaford, B.: McKibben artificial muscles: pneumatic actuators with biomechanical intelligence. In: IEEE/ASME 1999 International Conference on Advanced Intelligent Mechatronics (AIM 1999), Atlanta, GA (1999)

    Google Scholar 

  16. Nickel, V.L., Perry, J., Garrett, A.L.: Development of Useful Function in the Severely Paralyzed Hand. Journal of Bone and Joint Surgery 45(A), 933–952 (1963)

    Google Scholar 

  17. Tondu, B., Boitier, V., Lopez, P.: Naturally compliant robot-arms actuated by McKibben artificial muscles. In: 1994 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX (1994)

    Google Scholar 

  18. He, H., Ingalls, T., Olson, L., Ganley, K., Rikakis, T., He, J.: Interactive Multimodal Biofeedback for Task-Oriented Neural Rehabilitation. In: The 27th Annual International Conference of the IEEE EMBS (2005)

    Google Scholar 

  19. He, J., Koeneman, E.J., Schultz, R.S., Huang, H., Wanberg, J., Herring, D.E., Sugar, T., Herman, R., Koeneman, J.B.: Design of a robotic upper extremity repetitive therapy device. In: 9th International Conference on Rehabilitation Robotics (2005)

    Google Scholar 

  20. Huang, H., He, J.: Utilization of Biomechanical Modeling in Design of Robotic Arm for Rehabilitation of Stroke Patients. In: 26th Annual International Conference of the IEEE EMBS, San Francisco, CA (2004)

    Google Scholar 

  21. Byl, N., Roderick, J., Mohamed, O., Hanny, M., Kotler, J., Smith, A., Tang, M., Abrams, G.: Effectiveness of sensory and motor rehabilitation of the upper limb following the principles of neuroplasticity: patients stable poststroke. Neurorehabil. Neural Repair 17, 176–191 (2003)

    Article  Google Scholar 

  22. Baer, H.R., Wolf, S.L.: Modified Emory Functional Ambulation Profile: An Outcome Measure for the Rehabilitation of Poststroke Gait Dysfunction. Stroke 32, 973–979 (2001)

    Google Scholar 

  23. Carr, E.K., Kenney, F.D.: Positioning of the Stroke Patient: a Review of the Literature. Int. J. Nurs Stud. 29(4), 355–369 (1992)

    Article  Google Scholar 

  24. Fugl-Meyer, A.R., et al.: The post-stroke hemiplegic patient: a method of physical performance. Scandinavian Journal of Rehabilitation and Medicine 7, 13–31 (1975)

    Google Scholar 

  25. Jones, A., Carr, E.K., Newham, D.J., Wilson-Barnett, J.: Positioning of Stroke Patients: Evaluation of a Teaching Intervention with Nurses. Stroke 29, 1612–1617 (1998)

    Google Scholar 

  26. Pearl, M.L., Harris, S.L., Lippitt, S.B., et al.: A System for Describing Positions of the Humerus Relative to the Thorax and its use in the Presentation of Several Functionally Important Arm Positions. J. Shoulder Elbow. Surg. 1(2), 113–118 (1992)

    Article  Google Scholar 

  27. Simon, S.R., Alaranta, H.A., An, K.-A., et al.: Kinesiology. In: Simon, S.R., Wilson, J. (eds.) Orthopaedic Basic Science, pp. 519–622. American Academy of Orthopaedic Surgeons, Chicago (1994)

    Google Scholar 

  28. Wolf, S.L., Catlin, P.A., et al.: Assessing the Wolf Motor Function Test as an Outcome Measure for Research with Patients Post-stroke. Stroke 32, 1635–1639 (2001)

    Google Scholar 

  29. Patton, J.L., Stoykov, M.E., Kovic, M., Mussa-Ivaldi, F.A.: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp. Brain Res. 168(3), 368–383 (2006)

    Article  Google Scholar 

  30. Balasubramanian, S., Ward, J., Sugar, T., He, J.: Characterization of the Dynamic Properties of Pneumatic Muscle Actuators. In: Proc. ICORR (2007)

    Google Scholar 

  31. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703 (1985)

    Google Scholar 

  32. Bristow, D.A., Tharayil, M., Alleyne, A.G.: A survey of iterative learning control. Control Systems Magazine. IEEE 26, 96–114 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, J., Balasubramanian, S., Wei, R. (2008). Designing Interactive and Intelligent Control for Rehabilitation Robots. In: Xiong, C., Liu, H., Huang, Y., Xiong, Y. (eds) Intelligent Robotics and Applications. ICIRA 2008. Lecture Notes in Computer Science(), vol 5315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88518-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88518-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88516-0

  • Online ISBN: 978-3-540-88518-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics