Skip to main content

Role of Biosilica in Materials Science: Lessons from Siliceous Biological Systems for Structural Composites

  • Chapter
  • First Online:
Biosilica in Evolution, Morphogenesis, and Nanobiotechnology

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 47))

Abstract

The unique mechanical response of spicules of Hexactinellid sponges, notably, Euplectella aspergillum, are reviewed and related to the structure, architecture, and failure modes of those natural rigid composite materials. In particular, exceptional levels of resilience, damping capacity, and the ability to dissipate mechanical energy prior to failure have been observed, all these properties greatly exceeding those of synthetic melt-fabricated glass. How these observations can be related to the design of new structural composites that are based on glass are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizenberg J, Sundar VC, Yablon AD, Weaver JC, Chen G (2004) Biological glass fibers: correlation between optical and structural properties. Proc. Natl. Acad. Sci. USA 101:3358–3363

    Article  CAS  Google Scholar 

  • Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzl P (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science, 309:275–278

    Article  CAS  Google Scholar 

  • Cook, J, Gordon JE, Evans CC, Marsh DM (1964) A Mechanism for the control of crack propagation in all-brittle systems. Proc. Roy. Soc. Lond. A 282:508–520

    Article  Google Scholar 

  • Croce G, Frache A, Milanesio M, Marchese L, Causa M, Viterbo D, Barbaglia A, Bolis V, Bavestrello G, Cerrano C, Benatti U, Pozzolini M, Giovine M, Amenitsch H (2004) Structural characterization of siliceous spicules from marine sponges. Biophys. J 86:526–534

    Article  CAS  Google Scholar 

  • Garrone R, Simpson TL, Pottu-Boumendil J (1981) Ultrastructure and Deposition of Silica in Sponges. In: Simpson TL, Volcani BE (eds) Silicon and Siliceous Structures in Biological Systems. Springer-Verlag, New York, pp 495–525

    Chapter  Google Scholar 

  • Gordon, JE, The New Science of Strong Materials, Penguin Books, Harmondsworth, UK, 1976, p. 75

    Google Scholar 

  • Hartman WD (1981) Form and Distribution of Silica in Sponges. In: Simpson TL, Volcani BE (eds) Silicon and Siliceous Structures in Biological Systems, Springer-Verlag, New York, pp 454–493

    Google Scholar 

  • Levi C, Barton JL, Guillemet C, LeBras E, Lehuede P (1989) A remarkably strong natural glassy rod: the anchoring spicule of the Monorhaphis sponge. J. Mater. Sci. Lett. 8:337–339

    Article  CAS  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On Biomineralization, Oxford University Press, Oxford, pp 7–15

    Google Scholar 

  • Mann S (2001) Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, Oxford, p 91

    Google Scholar 

  • Mayer G (1963) unpublished report: the fracture of brittle solids under bending stresses in reactive solutions and in ultrahigh vacuum. Ilikon Corp., Natick, MA

    Google Scholar 

  • Mayer G (2004) Toughening of ceramic materials. Cer. Bull. 83:9301–9307

    Google Scholar 

  • Mayer G, Trejo R, Lara-Curzio E, Rodriguez M, Song H, Ma WH (2005) Lessons for new classes of inorganic/organic composites from the spicules and skeleton of the sea sponge Euplectella aspergillum, in Mechanical Properties of Bioinspired and Biological Materials, Warrendale, PA, MRS Symp. Proc. 844:79–86

    Google Scholar 

  • Mayer G (2006) New classes of tough composite materials-Lessons from natural rigid biological systems. Mater. Sci. Eng.-C 26:1261–1268

    Article  CAS  Google Scholar 

  • Menard KP (1999) Dynamic Mechanical Analysis, CRC Press, Boca Raton, FL, pp 61–65

    Book  Google Scholar 

  • Müller WEG, Krasko A, Le Pennec G, Schroeder HC (2003) Biochemistry and cell biology of silica formation in sponges. Micros. Res. Tech. 62:368–377

    Article  Google Scholar 

  • Müller WEG, Wendt K, Geppert C, Wiens M, Reiber A, Schroeder HC (2006) Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonema sieboldi. Biosens. Bioelec. 21:1149–1155

    Article  Google Scholar 

  • Perry CC, Keeling-Tucker T (2000) Biosilicification: the role of the organic matrix in structure control. J. Biol. Inorg. Chem. 5:537–550

    Article  CAS  Google Scholar 

  • Qi HJ, Ortiz C, Boyce MC (2005) Protein forced unfolding and its effects on the finite deformation stress—strain behavior of biomacromolecular solids. Mater. Res. Soc. Symp. Proc. 874:L4.3.1

    Google Scholar 

  • Sarikaya M, Fong H, Sunderland N, Flinn BD, Mayer G (2001) Biomimetic model of a spongespicular optical fiber-mechanical properties and structure. J. Mater. Res. 16:1420–1428

    Article  CAS  Google Scholar 

  • Uriz M-J, Turon X, Becerro MA, Agell G (2003) Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Micros. Res. Tech. 62:279–299

    Article  CAS  Google Scholar 

  • Uriz M-J (2006) Mineral skeletogenesis in sponges. Can. J. Zool. 84:322–356

    Article  CAS  Google Scholar 

  • Walter SL, Flinn BD, Mayer G (2007a) Mechanisms of toughening of a natural rigid composite. Mater. Sci. Eng.-C (in press)

    Google Scholar 

  • Walter SL, Flinn BD, Mayer G (2007b) Effects of loading rate on the mechanical behavior of a natural rigid composite. Acta Biomat. (in press)

    Google Scholar 

  • Woesz A, Weaver JC, Kazanci M, Dauphin Y, Aizenberg J, Morse DE, Fratzl P (2006) Micromechanical properties of biological silica in skeletons of deep-sea sponges. J. Mater. Res. 21:2068–2078

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mayer, G. (2009). Role of Biosilica in Materials Science: Lessons from Siliceous Biological Systems for Structural Composites. In: Müller, W.E.G., Grachev, M.A. (eds) Biosilica in Evolution, Morphogenesis, and Nanobiotechnology. Progress in Molecular and Subcellular Biology, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88552-8_12

Download citation

Publish with us

Policies and ethics