Skip to main content

Learning a Generative Model for Structural Representations

  • Conference paper
AI 2008: Advances in Artificial Intelligence (AI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5360))

Included in the following conference series:

Abstract

Graph-based representations have been used with considerable success in computer vision in the abstraction and recognition of object shape and scene structure. Despite this, the methodology available for learning structural representations from sets of training examples is relatively limited. This paper addresses the problem of learning archetypal structural models from examples. To this end we define a generative model for graphs where the distribution of observed nodes and edges is governed by a set of independent Bernoulli trials with parameters to be estimated from data in a situation where the correspondences between the nodes in the data graphs and the nodes in the model are not known ab initio and must be estimated from local structure. This results in an EM-like approach where we alternate the estimation of the node correspondences with the estimation of the model parameters. The former estimation is cast as an instance of graph matching, while the latter estimation, together with model order selection, is addressed within a Minimum Message Length (MML) framework. Experiments on a shape recognition task show the effectiveness of the proposed learning approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonev, B., et al.: Constellations and the Unsupervised Learning of Graphs. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 340–350. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Bunke, H., et al.: Graph Clustering Using the Weighted Minimum Common Supergraph. In: Graph Based Representations in Pattern Recognition, pp. 235–246. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Comley, J.W., Dowe, D.L.: General Bayesian networks and asymmetric languages. In: Proc. Hawaii International Conference on Statistics and Related Fields (2003)

    Google Scholar 

  4. Comley, J.W., Dowe, D.L.: Minimum message length and generalized Bayesian nets with asymmetric languages. In: Grünwald, P., Pitt, M.A., Myung, I.J. (eds.) Advances in Minimum Description Length: Theory and Applications (MDL Handbook), pp. 265–294. MIT Press, Cambridge (2005)

    Google Scholar 

  5. Dowe, D.L.: Foreword re C. S. Wallace. Computer Journal 51(5), 523–560 (2008)

    Article  Google Scholar 

  6. Dowe, D.L., Gardner, S., Oppy, G.R.: Bayes not bust! Why simplicity is no problem for Bayesians. British J. for the Philosophy of Science 58(4), 709–754 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dickinson, S.J., Pentland, A.P., Rosenfeld, A.: 3-D shape recovery using distributed aspect matching. IEEE Trans. Pattern Anal. Machine Intell. 14(2), 174–198 (1992)

    Article  Google Scholar 

  8. Friedman, N., Koller, D.: Being Bayesian about Network Structure. Machine Learning 50(1-2), 95–125 (2003)

    Article  MATH  Google Scholar 

  9. Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning Probabilistic models of relational structure. In: 8th Int. Conf. on Machine Learning, pp. 170–177 (2001)

    Google Scholar 

  10. Gold, S., Rangarajan, A.: A graduated Assignment Algorithm for Graph Matching. IEEE Trans. Pattern Anal. Machine Intell. 18(4), 377–388 (1995)

    Article  Google Scholar 

  11. Hagenbuchner, M., Sperduti, A., Tsoi, A.C.: A Self-Organizing Map for Adaptive Processing of Structured Data. IEEE Trans. Neural Networks 14, 491–505 (2003)

    Article  MATH  Google Scholar 

  12. Ioffe, S., Forsyth, D.A.: Human tracking with mixtures of trees. In: Proc. Int. Conf. Computer Vision, vol. I, pp. 690–695 (2001)

    Google Scholar 

  13. Kimia, B.B., Tannenbaum, A.R., Zucker, S.W.: Shapes, shocks, and deformations I: the components of shape and the reaction-diffusion space. Int. J. Computer Vision 15(3), 189–224 (1995)

    Article  Google Scholar 

  14. Todorovic, S., Ahuja, N.: Extracting Subimages of an unknown category from a set of images. In: IEEE Comp. Soc. conf. Computer Vision and Pattern Recognition, vol. 1, pp. 927–934 (2006)

    Google Scholar 

  15. Torsello, A., Hancock, E.R.: A Skeletal Measure of 2D Shape Similarity. Computer Vision and Image Understanding 95(1), 1–29 (2004)

    Article  MATH  Google Scholar 

  16. Torsello, A., Hancock, E.R.: Learning Shape-Classes Using a Mixture of Tree-Unions. IEEE Trans. Pattern Anal. Machine Intell. 28(6), 954–967 (2006)

    Article  Google Scholar 

  17. Wallace, C.S.: Statistical and Inductive Inference by Minimum Message Length. In: Information Science and Statistics. Springer, Heidelberg (2005)

    Google Scholar 

  18. Wallace, C.S., Boulton, D.M.: An information measure for classification. Computer Journal 11(2), 185–194 (1968)

    Article  MATH  Google Scholar 

  19. Wallace, C.S., Dowe, D.L.: Minimum message length and Kolmogorov complexity. Computer Journal 42(4), 270–283 (1999)

    Article  MATH  Google Scholar 

  20. Wallace, C.S., Freeman, P.R.: Estimation and inference by compact coding. Journal of the Royal Statistical Society series B, 240–252 (1987) (See also Discussion on pp. 252–265)

    Google Scholar 

  21. White, D., Wilson, R.C.: Spectral Generative Models for Graphs. In: Int. Conf. Image Analysis and Processing, pp. 35–42. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  22. Zhu, S.C., Yuille, A.L.: FORMS: A flexible object recognition and modelling system. Int. J. Computer Vision 20(3), 187–212 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torsello, A., Dowe, D.L. (2008). Learning a Generative Model for Structural Representations. In: Wobcke, W., Zhang, M. (eds) AI 2008: Advances in Artificial Intelligence. AI 2008. Lecture Notes in Computer Science(), vol 5360. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89378-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89378-3_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89377-6

  • Online ISBN: 978-3-540-89378-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics