Skip to main content

Advances in Phytoremediation and Rhizoremediation

  • Chapter
  • First Online:
Advances in Applied Bioremediation

Abstract

Phytoremediation, with the associated role of rhizospheric microorganisms, is an important tool in bioremediation processes. Plants have an inherent ability to detoxify some xenobiotics and remove compounds from soil by direct uptake of the contaminants followed by subsequent transformation, transport and product accumulation, using enzymes similar to detoxification enzymes in mammals. Being autotrophic organisms, plants do not utilize organic compounds for their energy and carbon metabolism. As a consequence, they usually lack the catabolic enzymes necessary to achieve full mineralization of organic molecules. Plants can be used for removal of both inorganic and organic xenobiotics present in the soil, water and air. The chapter summarizes the classical approaches and possibilities for increasing effectiveness of phyto-and rhizo-remediation using genetically modified organisms. Perspectives are presented related to the use of molecular methods, including metagenomics and stable isotope probing, for obtaining deeper knowledge with a view to influencing the composition of consortia of organisms living in the contaminated environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre de Carcer D, Martin M, Mackova M, Macek T, Karlson U, Rivilla R (2007) The introduction of genetically modified microorganisms designed for rhizoremediation induces changes on native bacteria in the rhizosphere but not in the surrounding soil. ISME J 1:215–223

    Article  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy-metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conservat Recycl 11:41–49

    Article  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  Google Scholar 

  • Bizily S, Rugh C, Meagher R (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  CAS  Google Scholar 

  • Bock C, Kolb M, Bokern M, Harms H, Mackova M, Chroma L, Macek T, Hughes J, Just C, Schnoor J (2002) Advances in phytoremediation: phytotransformation. In: Reible D, Demnerova K (eds) Innovative approaches to the on-site assessment and remediation of contaminated soils. Kluwer, Dordrecht, pp 115–140

    Google Scholar 

  • Boyajian GE, Carreira LH (1997) Phytoremediation: a clean transition from laboratory to marketplace? Nat Biotechnol 15:127–128

    Article  CAS  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge-ammended soils. Environ Sci Technol 29:1581–1585

    Article  CAS  Google Scholar 

  • Bruce N (2007) Biodegradation and phytoremediation of explosives. In: Mackova M, Macek T, Demnerova K, Pazlar V (eds) Abstracts, 4th Symposium on biosorption and bioremediation, VSCHT Prague, p 77

    Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    Google Scholar 

  • Burken J, Xingmao Ma (2006) Phytoremediation of volatile organic compounds. In: Mackova M, Dowling D, Macek T (eds) Phytoremediation and rhizoremediation. Theoretical background. Focus on biotechnology, vol. 9A. Springer, Dordrecht, pp 199–216

    Chapter  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  Google Scholar 

  • Chroma L, Moeder M, Kucerova P, Macek T, Mackova M (2003) Plant enzymes in metabolism of polychlorinated biphenyls. Fresenius Environ Bull 12:291–295

    CAS  Google Scholar 

  • Clemens S, Palmgren M, Kraemer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Czako M, Feng XZ, He Y, Gollapudi S, Marton L (2006) In vitro propagation of wetland monocots for phytoremediation. In: Mackova M, Dowling D, Macek T (eds) Phytoremediation and rhizoremediation. Theoretical background. Focus on biotechnology, vol. 9A. Springer, Dordrecht, pp 217–226

    Chapter  Google Scholar 

  • Donnelly PK, Hedge RS, Fletcher JS (1994) Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28:984–988

    Article  Google Scholar 

  • Doran PM (1997) Hairy Roots: culture and applications. Harwood, London

    Google Scholar 

  • Doty SL, James CA, Moore AL, Vajzovic A, Singleton GL, Ma C, Khan Z, Xin G, Kang JW, Park AY, Meilan R, Strauss SH, Wilkerson J, Farin F, Strand SE (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc Natl Acad Sci USA 104:16816–16821

    Article  CAS  Google Scholar 

  • Eapen S, Singh S, D’Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442–451

    Article  CAS  Google Scholar 

  • Fletcher JS, Donnelly PK, Hedge RS (1995) Biostimulation of PCB-degrading bacteria by compounds released from plant roots. In: Hinchee RE, Anderson DB and Hoeppel RE (eds) Bioremediation of recalcitrant organics. Battelle, Columbus, pp 131–136

    Google Scholar 

  • Francova K, Macek T, Demnerova K, Mackova M (2001) Transgenic plants — potential tool for the decontamination of the environment. Chem Listy 95:630–637

    CAS  Google Scholar 

  • Francova K, Sura M, Macek T, Szekeres M, Bancos S, Demnerova K, Sylvestre M, Mackova M (2003) Preparation of plants containing bacterial enzyme for degradation of polychlorinated biphenyls. Fresenius Environ Bull 12:309–313

    CAS  Google Scholar 

  • Francova K, Mackova M, Macek T, Sylvestre M (2004) Ability of bacterial biphenyl dioxygenases from Burkholderia sp. LB400 and Comamonas testosteroni B-356 to catalyse oxygenation of ortho-hydroxybiphenyls formed from PCBs by plants. Environ Pollut 127:41–48

    Article  CAS  Google Scholar 

  • French CE, Rosser SJ, Davies GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 17:491–494

    Article  CAS  Google Scholar 

  • Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S, Logendra S, Gleba YY, Raskin I (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci USA 96:5973–5977

    Article  CAS  Google Scholar 

  • Glick B (2006) Modifying a plant’s response to stress by decreasing ethylene production. In: Mackova M, Dowling D, Macek T (eds) Phytoremediation and rhizoremediation. Theoretical background. Focus on biotechnology, vol. 9A. Springer, Dordrecht, pp 227–236

    Chapter  Google Scholar 

  • Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J Biotechnol 81:45–54

    Article  CAS  Google Scholar 

  • Grill E, Loffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesised from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Nat Acad Sci USA 84:6838–6846

    Article  Google Scholar 

  • Harms H, Kottutz E (1990) Bioconversion of xenobiotics in different plant systems - cell suspension cultures, root cultures and intact plants. In: Nijkamp HJJ, van der Plas LHW, van Aartrijk J (eds) Progress in plant cellular and molecular biology. Kluwer, Dordrecht, pp 650–655

    Google Scholar 

  • Heaton ACP, Rugh CL, Wang N-J, Meagher RB (1998) Phytoremediation of Hg-polluted soils by genetically engineered plants. J Soil Cont 7:497–509

    Article  CAS  Google Scholar 

  • Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A, Nakajima M, Yazaki J (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil 196:277–281

    Article  CAS  Google Scholar 

  • Janouskova M, Pavlikova D, Macek T, Vosatka M (2005) Influence of arbuscular mycorrhiza on the growth and cadmium uptake of tobacco with inserted metallothionein gene. Appl Soil Ecol 29:209–214

    Article  Google Scholar 

  • Kärenlampi S, Schat H, Vangronsveld J, Verkleij JAC, van der Lelie D, Mergeay M, Tervahauta AI (2000) Genetic engineering in the improvement of plants for phytoremediation of metal-polluted soils. Environ Pollut 107:225–231

    Article  Google Scholar 

  • Komives T, Gullner G (2006) Dendroremediation: the use of trees in cleaning up polluted soils. In: Mackova M, Dowling D, Macek T (eds) Phytoremediation and rhizoremediation. Theoretical background. Focus on biotechnology, vol. 9A. Springer, Dordrecht, pp 23–32

    Chapter  Google Scholar 

  • Kotrba P, Macek T, Ruml T (1999) Heavy-metal binding peptides and proteins in plants. A review. Coll Czech Chem Commun 64:1057–1086

    Article  CAS  Google Scholar 

  • Krämer U, Chardonnens A (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55:661–672

    Article  Google Scholar 

  • Lasat MM (2000) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–125

    Article  Google Scholar 

  • Leigh MB (2006) Methods for rhizoremediation research. Approaches to experimental design and microbial analysis. In: Mackova M, Dowling D, Macek T (eds) Phytoremediation and rhizoremediation. Theoretical background. Focus on biotechnology, vol. 9A. Springer, Dordrecht, pp 33–56

    Chapter  Google Scholar 

  • Leigh MB, Prouzova P, Mackova M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol 72:2331–2342

    Article  CAS  Google Scholar 

  • Leigh MB, Pellizari VH, Uhlik O, Sutka R, Rodrigues J, Ostrom NE, Zhou J, Tiedje JM (2007) Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J 1:134–48.

    Article  CAS  Google Scholar 

  • Ma W, Penrose DM, Glick BR (2002) Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Can J Microbiol 48:947–954

    Article  CAS  Google Scholar 

  • Macek T. (1989) Poroporo, Solanum aviculare, S. laciniatum: in vitro culture and the production of solasodine. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 7. Springer, Heidelberg, pp 443–467

    Google Scholar 

  • Macek T, Kotrba P, Suchova M, Skacel F, Demnerova K, Ruml T (1994) Accumulation of cadmium by hairy root cultures. Biotechnol Lett 16:621–624

    Article  CAS  Google Scholar 

  • Macek T, Mackova M, Truksa M, Singh-Cundy A, Kotrba P, Yancey N, Scouten WH (1996) Preparation of transgenic tobacco with a yeast metallothionein combined with a polyhistidine tail. Chem Listy 90:690

    CAS  Google Scholar 

  • Macek T, Kotrba P, Ruml T, Skacel F, Mackova M (1997) Accumulation of cadmium by hairy root cultures. In: Doran PM (ed) Hairy roots: culture and application. Harwood, London, pp 133–138

    Google Scholar 

  • Macek T, Mackova M, Burkhard J, Demnerova K (1998) Introduction of green plants for the control of metals and organics in remediation. In: Holm FW (ed) Effluents from alternative demilitarization technologies, NATO PS Series 1, vol 12, Kluwer, Dordrecht, pp 71–85

    Google Scholar 

  • Macek T, Mackova M, Kucerova P, Burkhard J, Kotrba P, Demnerova K (1999) Phytoremediation – its possible application in chemical weapons demilitarisation. In: Chillcott I (ed) Proceedings of the International congress on chemical weapons demilitarisation, CWD99 Wien, July 1999, DERA UK, pp 865–912

    Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–35

    Article  CAS  Google Scholar 

  • Macek T, Mackova M, Pavlikova D, Szakova J, Truksa M, Cundy AS, Kotrba P, Yancey N, Scouten WH (2002) Accumulation of cadmium by transgenic tobacco. Acta Biotechnol 22:101–106

    Article  CAS  Google Scholar 

  • Macek T, Francova K, Kochankova L, Lovecka P, Ryslava E, Rezek J, Sura M, Triska J, Demnerova K, Mackova M (2004) Phytoremediation: biological cleaning of a polluted environment. Rev Environ Health 19:63–82

    CAS  Google Scholar 

  • Macek T, Sura M, Pavlikova D, Francova K, Scouten WH, Szekeres M, Sylvestre M, Mackova M (2005) Can tobacco have potentially beneficial effect to our health? Z Naturforsch [C] 60:292–299

    CAS  Google Scholar 

  • Macek T, Francova K, Sura M, Mackova M (2006) Genetically modified plants with improved properties for phytoremediation purposes. In: Morel J-L, Echevaria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils. NATO Science Series IV, 68, Springer, Dordrecht, pp 85–108

    Chapter  Google Scholar 

  • Macek T, Kotrba P, Svatos A, Novakova M, Demnerova K, Mackova M (2008) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26:146–152

    Article  CAS  Google Scholar 

  • Mackova M, Macek T, Burkhard J, Ocenaskova J, Demnerova K, Pazlarova J (1997a) Biodegradation of polychlorinated biphenyls by plant cells. Int Biodeter Biodegrad 39:317–325

    Article  CAS  Google Scholar 

  • Mackova M, Macek T, Kucerova P, Burkhard J, Pazlarova J, Demnerova K (1997b) Degradation of polychlorinated biphenyls by hairy root culture of Solanum nigrum. Biotechnol Lett 19:787–790

    Article  CAS  Google Scholar 

  • Burken J, Xingmao Ma (2006) Phytoremediation of volatile organic compounds. In: Mackova M, Dowling D, Macek T (eds) Phytoremediation and rhizoremediation. Theoretical background. Focus on biotechnology, vol. 9A. Springer, Dordrecht, pp 199–216

    Google Scholar 

  • Mackova M, Vrchotova B, Francova K, Sylvestre M, Tomaniova M, Lovecka P, Demnerova K, Macek T (2007) Biotransformation of PCBs by plants and bacteria — consequences of plant-microbe interactions. Eur J Soil Biol 43:233–241

    Article  CAS  Google Scholar 

  • Marton L, Wullems GJ, Molendijk L, Schilperoort RA (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277:129–131

    Article  Google Scholar 

  • McCutcheon SC, Schnoor JL (eds) (2003) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken

    Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  Google Scholar 

  • Mejare M, Bulow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73

    Article  CAS  Google Scholar 

  • Mezzari MP, Walters K, Jelinkova M, Shih MC, Just CL, Schnoor JL (2005) Gene expression and microscopic analysis of Arabidopsis exposed to chloroacetanilide herbicides and explosive compounds. A phytoremediation approach. Plant Physiol 138:858–869

    Article  CAS  Google Scholar 

  • Mohammadi M, Chalavi V, Novakova-Sura M, Laliberte JF, Sylvestre M (2007) Expression of bacterial biphenyl-chlorophenyl dioxygenase genes in tobacco plants. Biotechnol Bioeng 97:496–505

    Article  CAS  Google Scholar 

  • Montagu MV (2005) Technological milestones from plant science to agricultural biotechnology. Trends Plant Sci 10:559–560

    Article  CAS  Google Scholar 

  • Morel JL, Chaineau CH, Schiavon M, Lichtfouse E (1999) The role of plants in the remediation of contaminated soils. In: Baveye P (ed) Bioavailability of organic xenobiotics in the environment. Kluwer, Dordrecht, pp 429–449

    Google Scholar 

  • Nedelkoska TV, Doran PM (2000) Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnol Bioeng 67:607–615

    Article  CAS  Google Scholar 

  • Nedelkoska TV, Doran PM (2002) Hyperaccumulation of nickel by hairy root of Alyssum species: comparison with whole regenerated plants, Biotechnol Prog 17:752–759

    Article  CAS  Google Scholar 

  • Nesnerova P, Sebek P, Macek T, Svatos A (2004) First semi-synthetic preparation of sex pheromones. Green Chem 6:305–307

    Article  CAS  Google Scholar 

  • Novakova M, Mackova M, Chrastilova Z, Prokesova J, Szekeres M, Demnerova K, Macek T (2009) Cloning the bacterial bphC gene into Nicotiana tabacum to improve the efficiency of PCB phytoremediation. Biotechnol Bioeng 102:29–37

    Article  CAS  Google Scholar 

  • Otte ML, Jacob DL (2006) Constructed wetlands for phytoremediation, rhizofiltration, phytostabilisation and phytoextraction. In: Mackova M, Dowling D, Macek T (eds) Phytoremediation and rhizoremediation. Theoretical background. Focus on Biotechnology, vol. 9A. Springer, Dordrecht, pp 57–68

    Chapter  Google Scholar 

  • Pan A, Yang M, Tie F, Li L, Chen ZL, Ru B (1994) Expression of mouse metallothionein gene-1 confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341–351

    Article  CAS  Google Scholar 

  • Pavlikova D, Macek T, Mackova M, Szakova J, Balik J (2004a) Cadmium tolerance and accumulation in transgenic tobacco plants with yeast metallothionein combined with a polyhistidine tail. Int Biodeter Biodegrad 52:233–237

    Article  CAS  Google Scholar 

  • Pavlikova D, Macek T, Mackova M, Sura M, Szakova J, Tlustos P (2004b) The evaluation of cadmium, zinc, and nickel accumulation ability of transgenic tobacco bearing different transgenes. Plant Soil Environ 50:513–517

    CAS  Google Scholar 

  • Pilon-Smits E and Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21:439–456

    Article  CAS  Google Scholar 

  • Pletsch M, Santos de Araujo B, Charlwood BV (1999) Novel biotechnological approaches in environmental remediation research. Biotechnol Adv 17:679–687

    Article  CAS  Google Scholar 

  • Raskin I (1996) Plant genetic engineering may help with environmental cleanup. Proc Natl Acad Sci USA 93:3164–3166

    Article  CAS  Google Scholar 

  • Rezek J, Macek T, Mackova M, Triska J (2007) Plant metabolites of polychlorinated biphenyls in hairy root culture of black nightshade Solanum nigrum SNC-9O. Chemosphere 69:1221–1227

    Article  CAS  Google Scholar 

  • Rezek J, Macek T, Mackova M, Ruzickova K, Triska J (2008) Hydroxy-PCBs, methoxy-PCBs and hydroxy-methoxy-PCBs: metabolites of polychlorinated biphenyls formed in vitro by tobacco cells. Environ Sci Technol 42:5746–5751

    Google Scholar 

  • Rittmann BE (2006) Microbial ecology to manage processes in environmental biotechnology. Trends Biotechnol 24:261–266

    Article  CAS  Google Scholar 

  • Rudolph A, Becker R, Scholz G, Prochazka Z, Toman J, Macek T, Herout V (1985) The occurence of the amino acid nicotianamine in plants and microorganisms. A reinvestigation. Biochem Physiol Pflanzen 180:557–563

    CAS  Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182–3187

    Article  CAS  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    Article  CAS  Google Scholar 

  • Rulisek L, Havlas Z (2000) Theoretical studies of metal ion selectivity. 1. DFT calculations of interaction energies of amino acid side chains with selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+). J Am Chem Soc 122:10428–10439

    Article  CAS  Google Scholar 

  • Rulisek L, Havlas Z (2003) Theoretical studies of metal ion selectivity. 3. A theoretical design of the most specific combinations of functional groups representing amino acid side chains for the selected metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+). J Phys Chem B 107:2376–2385

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Bio Technol 13:468–474

    CAS  Google Scholar 

  • Sandermann H (1994) Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics 4:225–241

    Article  CAS  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic contaminants. Environ Sci Technol 29:318–323

    Article  Google Scholar 

  • Schroeder P, Daubner D, Maier H, Neustifter J, Debus R (2008) Phytoremediation of organic xenobiotics — glutathione-dependent detoxification in Phragmites plants from European treatment sites. Biores Technol 99:7183–7191

    Article  CAS  Google Scholar 

  • Shanks JV, Morgan J (1999) Plant “hairy root” culture. Curr Opin Biotechnol 10:151–155

    Article  CAS  Google Scholar 

  • Singer A (2006) The chemical ecology of pollutant biodegradation. Bioremediation and phytoremediation from mechanistic and ecological perspectives. In: Mackova M, Dowling D, Macek T (eds) Phytoremediation and rhizoremediation. Theoretical background. Focus on biotechnology, vol. 9A. Springer, Dordrecht, pp 5–22

    Chapter  Google Scholar 

  • Singer A, Gilbert ES, Luepromchai E, Crowley DE (2000) Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Appl Microbiol Biotechnol 54:838–843

    Article  CAS  Google Scholar 

  • Singer A, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130

    Article  CAS  Google Scholar 

  • Soudek P, Podlipna R, Vanek T (1998) Phytoremediation of heavy metals by hairy root culture of Armoracia rusticana. Int Biodeterior Biodegradration 42:235–236

    Google Scholar 

  • Sudova R, Pavlikova D, Macek T, Vosatka M (2007) The effect of EDDS chelate and inoculation with the arbuscular mycorrhizal fungus Glomus intraradices on the efficacy of lead phytoextraction by two tobacco clones. Appl Soil Ecol 35:163–173

    Article  Google Scholar 

  • Tlustos P, Pavlikova D, Szakova J, Fischerova Z, Balik J (2006) Exploitation of fast growing trees in metal remediation. In: Mackova M, Dowling D, Macek T (eds) Phytoremediation and rhizoremediation. Theoretical background. Focus on biotechnology, vol. 9A. Springer, Dordrecht, pp 83–102

    Chapter  Google Scholar 

  • Tomaszewski JE, Smitherny DW, Cho YM, Luthy RG, Lowry GV, Reible D, Macek T, Sura M, Chrastilova Z, Demnerova K, Mackova M, Pavlíkova D, Szekeres M, Sylvestre M (2006) Treatment and containment of contaminated sediments. In: Reible D, Lanczos T (eds) Assessment and remediation of contaminated sediments. NATO ASI Series, Springer, Dordrecht, pp 135–178

    Google Scholar 

  • Uhlik O, Jecna K, Leigh MB, Mackova M, Macek T (in press) DNA-based stable isotope probing: a link between community structure and function. Sci Total Environ doi:10.1016/j.scitotenv.2008.05.012

    Google Scholar 

  • Vain P. (2006) Global trends in plant transgenic science and technology. Trends Biotechnol 24:206–211

    Article  CAS  Google Scholar 

  • Van Aken B (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26:225–227

    Article  CAS  Google Scholar 

  • Vanek T, Schwitzguebel J-P (2003) Phytoremediation inventory, COST Action 837 View. UOCHB AVCR, Prague

    Google Scholar 

  • Villacieros M, Whelan C, Mackova M, Molgaard J, Sanchez-Contreras M, Lloret J, Aguirre de Carcer D, Oruezabal RI, Bolanos L, Macek T, Karlson U, Dowling DN, Martin M, Rivilla R (2005) PCB rhizoremediation by Pseudomonas fluorescens F113 derivatives using a Sinorhizobium meliloti nod system to drive bph gene expression. Appl Environ Microbiol 71:2687–2694

    Article  CAS  Google Scholar 

  • Vosatka M (2001) A future role for the use of arbuscular mycorrhizal fungi in soil remediation: a chance for small–medium enterprises? Minerva Biotechnol 13:69–72

    Google Scholar 

  • Wevar Oller AL, Agostini E, Talano MA, Capozucca C, Milrad SR, Tigier HA, Medina MI (2005) Overexpression of a basic peroxidase in transgenic tomato hairy roots increases phytoremediation of phenols. Plant Sci 169:1102–1111

    Article  CAS  Google Scholar 

  • Wiessner A, Kuschk P, Kappelmeyer U, Bederski O, Müller RA, Kästner M (2006) Influence of helophytes on redox reactions in their rhizosphere. In: Mackova M, Dowling D, Macek T (eds) Phytoremediation and rhizoremediation. Theoretical background. Focus on biotechnology, vol. 9A. Springer, Dordrecht, pp 69–82

    Chapter  Google Scholar 

  • Wimmer Z, Macek T, Vanek T, Streinz L, Romanuk M (1987) Biotransformation of 2-(4-methoxybenzyl)-1-cyclohexanone by cell cultures of Solanum aviculare. Biol Plant 29:88–93

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank for support of their research by projects of the Ministry of Education of the Czech Republic 1M06030, 2B08031, 2B06151, Z40550506, and MSM6046137305.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomas Macek or Martina Mackova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Macek, T. et al. (2009). Advances in Phytoremediation and Rhizoremediation. In: Singh, A., Kuhad, R., Ward, O. (eds) Advances in Applied Bioremediation. Soil Biology, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89621-0_14

Download citation

Publish with us

Policies and ethics