Skip to main content

Phytoremediation for Oily Desert Soils

  • Chapter
  • First Online:
Advances in Applied Bioremediation

Part of the book series: Soil Biology ((SOILBIOL,volume 17))

Abstract

This chapter deals with strategies for cleaning oily desert soils through rhizosphere technology. Bioremediation involves two major approaches; seeding with suitable microorganisms and fertilization with microbial growth enhancing materials. Raising suitable crops in oil-polluted desert soils fulfills both objectives. The rhizosphere of many legume and non-legume plants is richer in oil-utilizing micro-organisms than non-vegetated soils. Furthermore, these rhizospheres also harbour symbiotic and asymbiotic nitrogen-fixing bacteria, and are rich in simple organic compounds exuded by plant roots. Those exudates are excellent nutrients for oil-utilizing microorganisms. Since many rhizospheric bacteria have the combined activities of hydrocarbon-utilization and nitrogen fixation, phytoremediation provides a feasible and environmentally friendly biotechnology for cleaning oil-polluted soils, especially nitrogen-poor desert soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Nasser M, Makawi AA, Abdel-Moneir AA (1979) Occurrence of certain microorganism in rhizosphere soils of maize, common-bean and cotton as affected by the application of temik or orthocide pesticides. Egypt J Microbiol 14:37–44

    CAS  Google Scholar 

  • Al-Awadhi H, El-Nemr I, Mahmoud H, Sorkhoh N, Radwan SS (2008) Plant-associated bacteria as tools for phytoremediation of oily nitrogen-poor soils. Int J Phytoremd 11:1–17

    Google Scholar 

  • Al-Awadhi H, Sulaiman RHD, Mahmoud HM, Radwan SS (2007) Alkaliphilic and halophilic hydrocarbon-utilizing bacteria from Kuwaiti coasts of the Arabian Gulf. Appl Microbiol Biotechnol 77:183–186

    Article  CAS  Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic, San Diego

    Google Scholar 

  • Al-Hasan RH, Al-Bader DA, Sorkhoh NA, Radwan SS (1998) Evidence for n-alkane consumption and oxidation by filamentous cyanobacteria from oil-contaminated coasts of the Arabian Gulf. Mar Biol 130:521–527

    Article  CAS  Google Scholar 

  • Al-Hasan RH, Sorkhoh NA, Al-Bader D, Radwan SS (1994) Utilization of hydrocarbons by cyanobacteria from microbial mats on oily coasts of the Gulf. Appl Microbiol Biotechnol 41:615–619

    Article  CAS  Google Scholar 

  • Anderson TA, Kruger EL, Coats JR (1994) Biodegradation of pesticide wastes in the root zone of soils collected at an agrochemical dealership. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology, American Chemical Society, Washington DC, pp. 199–209

    Chapter  Google Scholar 

  • Aprill W, Sims RC (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbons treated in soil. Chemosphere 20:253–265

    Article  CAS  Google Scholar 

  • Applied Biotreatment Association (1989) Case history compendium. Applied Biotreatment Association, Washington DC

    Google Scholar 

  • Applied Biotreatment Association (1990) The role of biotreatment of oil spills. Applied Biotreatment Association, Washington DC

    Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209

    CAS  Google Scholar 

  • Atlas RM (1995) Bioremediation. Chem Eng News, April 3:32–42

    Google Scholar 

  • Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum in seawater. Limitation by nitrogen and phosphorus. Biotech Bioeng 14:309–318

    Article  CAS  Google Scholar 

  • Atlas RM, Bartha R (1998) Microbial ecology, fundamentals and applications, 4th edn. Benjamin/Cummings, California

    Google Scholar 

  • Atlas RM, Heintz CE (1973) Ultrastructure of two species of oil-degrading marine bacteria. Can J Microbiol 19:43–45

    CAS  Google Scholar 

  • Atlas RM, Pramer D (1990) Focus on bioremediation. ASM News 56:7

    Google Scholar 

  • Barabas G, Sorkhoh NA, Fardoon F, Radwan SS (1995) n-alkane utilization by oligocarbophilic actinomycete strains from oil-polluted Kuwaiti desert soil. Actinomycetol 9:13–18

    Article  Google Scholar 

  • Banks MK, Govindaraju RS, Schwab AP, Kulakow P (2000) Part I: Field demonstration. In: Fiorenza S, Oubre CL, Ward CH (eds) Phytoremediation of hydrocarbon-contaminated soil. Lewis Publishers, Baton Rouge, pp 3–88

    Google Scholar 

  • Bossert I, Bartha R (1984) The fate of petroleum in soil ecosystem. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 435–473

    Google Scholar 

  • Boulton CA, Ratledge C (1984) The physiology of hydrocarbon-utilization microorganisms. In: Wiseman A (ed) Topics in fermentation and enzyme technology, vol 9. Ellis Horwood, Chichester, pp 11–77

    Google Scholar 

  • Boyle J, Shann J (1995) Biodegradation of phenol, 2,4-DCP and 2,4,5-T in field-collected rhizosphere and nonrhizosphere soils. J Environ Qual 24:782–785

    CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. Springer, Berlin

    Google Scholar 

  • Cerniglia CE, Gibson DT, van Baalen C (1980a) Oxidation of naphthalene by the cyanobacteria and microalgae. J Gen Microbiol 116:495–500

    CAS  Google Scholar 

  • Cerniglia CE, van Baalen C, Gibson DT (1980b) Metabolism of naphthalene by the cyanobacterium Oscillatoria sp. strain JCM. J Gen Microbiol 116:485–494

    CAS  Google Scholar 

  • Cundell AM, Mueller WC, Traxier RW (1976) Morphology and ultrastructure of a Penicillium sp. grown on n-hexadecane or peptone. Appl Environ Microbiol 31:408–414

    CAS  Google Scholar 

  • Dashti N, Khanafer M, Radwan SS (2005) Endophytic and epiphytic hydrocarbon-utilizing bacteria associated with root nodules of legumes. In: Proceedings, Twenty-eighth Arctic and Marine Oil Spill Program (AMOP) Technical Seminar, Calgary

    Google Scholar 

  • Dejong E (1980) The effects of a crude oil spill on cereals. Environ Pollut Ser 22:187–196

    Article  CAS  Google Scholar 

  • Donnelly PK, Fletcher JS (1992) Abstracts of the 13th Annual Meeting of the Society of Environmental Toxicology and Chemistry, Cincinnati, OH, USA, p 103

    Google Scholar 

  • Drees KP, Neilson JW, Betancourt JL, Quade J, Henderson DA, Pryor BM, Maier RM (2006) Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Appl Environ Microbiol 72:7902–7908

    Article  CAS  Google Scholar 

  • Einsele A (1983) Biomass from higher n-alkanes. In: Rehm H-J, Reed G (eds) Biotechnology — a comprehensive treatise, vol 3. Verlag Chemie, Weinheim, pp 43–81

    Google Scholar 

  • Ellis BE (1977) Degradation of phenolic compounds by freshwater algae. Plant Sci Lett 8:213–216

    Article  CAS  Google Scholar 

  • Franzman PD, Robertson WJ, Zappia LR, Davis GB (2002) The role of microbial populations in the containment of aromatic hydrocarbons in the subsurface. Biodegradation 13:65–78

    Article  Google Scholar 

  • Fattah AH, Wort DJ (1970) Effect of light and temperature on stimulation of vegetative and reproductive growth of bean plants by naphthenates. Agron J 62:576–577

    Article  CAS  Google Scholar 

  • Friedmann EL (1992) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  Google Scholar 

  • Fukui A, Tanaka A (1981) Metabolism of alkanes by yeasts. Adv Biochem Eng 19:217–237

    CAS  Google Scholar 

  • Gavrilova EA, Kruglov YV, Garankina NG Tr. Vses (1983) Influence of plants and rhizosphere microflora on degradation of diazinon in soil. Nauchno Issled Instit Skh Mikrobiologii 52:67–70

    CAS  Google Scholar 

  • Gibbs CF (1975) Quantitative studies on marine biodegradation of oil. I. Nutrient limitation at 14°C. Proc R Soc London 188:61–82

    CAS  Google Scholar 

  • Gibbs CF, Pugh KB, Andrews AP (1975) Quantitative studies on marine biodegradation of oil. II. Effect of temperature. Proc R Soc London 188:83–94

    CAS  Google Scholar 

  • Glavin DP, Cleaves HJ, Schubert M, Aubrey A, Bada JL (2004) New methods for estimating bacterial cells abundances in natural samples by use of sublimation. Appl Environ Microbiol 70:5923–5928

    Article  CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotech Adv 21:383–393

    Article  CAS  Google Scholar 

  • Gomez-Silva B, Rainey FA, Warren-Rhodes KA, McKay CP, Navarro-Gonzalez R (2008) Atacama desert soil microbiology. In: Dion P, Nautiyal CS (ed) Microbiology of extreme soils, vol 13. Springer, Heidelberg, pp 117–132

    Chapter  Google Scholar 

  • Hasnain S, Yasmin S, Yasmin A (1993) The effect of lead resistant Pseudomonads on the growth of Triticum aestivum seedlings under lead stress. Environ Pollut 81:179–184

    Article  CAS  Google Scholar 

  • Hinchee RE, Olfenbuttel RE (1991a) In situ bioreclamation: applications and investigations for hydrocarbon contaminated site remediation. Butterworth-Heinemann, Boston

    Google Scholar 

  • Hinchee RE, Olfenbuttel RE (1991b) On site bioreclamation: processes for xenobiotic and hydrocarbon treatment. Butterworth-Heinemann, Boston

    Google Scholar 

  • Hong MS, Farmayan WF, Dortch IJ, Chiang CY (2001) Phytoremediation of MTBE from a ground water plume. Environ Sci Technol 35:1231–1239

    Article  CAS  Google Scholar 

  • Hunt PG, Rickard WE, Deneke FJ, Koutz FR, Murman RP (1973) Terrestrial oil spills in Alaska: environmental effects and recovery. In: API/EPA-USCG, Prevention and control of oil spills. American Petroleum Institute, Washington DC, pp. 733–740

    Google Scholar 

  • Ivshina IB, Nesterenko OA, Glazacheva LE, Shekhotsev VP (1982) Facultative gas assimilating Rhodococcus rhodochrous studied by electron microscope. Mikrobiologiya 51:477–481

    Google Scholar 

  • Jordahl JL, Foster L, Schnoor JL, Alvarez PJJ (1997) Effect of hybrid poplar tree on microbial population important to hazardous waste bioremediation. Environ Toxicol Chem 16:1318–1321

    Article  CAS  Google Scholar 

  • Katayama A, Matsumura F (1993) Degradation of organochloride pesticides, particularly endosulran, by trichloro harzianum. Environ Toxicol Chem 12:1059–1065

    Article  CAS  Google Scholar 

  • Kennedy RS, Finnerty WR (1975) Microbial assimilation of hydrocarbons. 1. The fine structure of hydrocarbon-oxidizing Acinetobacter sp. Arch Microbiol 10:75–83

    Article  Google Scholar 

  • Kinako PDS (1981) Short-term effect of oil pollution on species numbers and productivity of a simple terrestrial ecosystem. Environ Pollut Ser 26:87–91

    Article  CAS  Google Scholar 

  • Klug MJ, Markovetz AJ (1971) Utilization of aliphatic hydrocarbons by microorganisms. Adv Microb Physiol 5:1–43

    Article  CAS  Google Scholar 

  • Knaebel DB, Vestal JR (1994) Intact rhizosphere microbial communities used to study microbial biodegradation in agricultural and natural soils. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology. American Chemical Society, Washington DC, pp 56–69

    Chapter  Google Scholar 

  • Komives T, Gullner G (2000) Phytoremediation. In: Wilkinson RE (ed) Plant-environment interaction. Marcel Dekker, New York, pp 437–452

    Google Scholar 

  • Koval EZ, Redchitz TI (1978) Fatty inclusions in the mycelium of aspergilli grown under surface cultivation on media with hydrocarbons. Mikrobiol Zh 40:736–740

    CAS  Google Scholar 

  • Lappin HM, Greaves MP, Slater JH (1985) Degradation of the herbicide mecoprop [2-(2-methyl-4chlorophenoxy) propionic acid] by a synergistic microbial community. Appl Environ Microbiol 49:429–433

    CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbiological degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  Google Scholar 

  • Lester ED, Satomi M, Ponce A (2007) Microflora of extreme arid Atacama Desert soils. Soil Biol Biochem 39:704–708

    Article  CAS  Google Scholar 

  • Levi ID, Shennan JL, Ebbon GP (1979) Biomass from liquid n-alkanes. In: Rose AH (ed) Microbial biomass. Academic, New York, pp 361–491

    Google Scholar 

  • Maier LM, Drees KP, Neilson JW, Handerson DA, Quade J, Betancourt JL (2004) Microbial life in the Atacama Desert. Science 306:1289

    Article  CAS  Google Scholar 

  • McGill WB, Nyborg M (1975) Reclamation of wet forest soils subjected to oil spills, Publication No. 6-75-1, Alberta Institute of Pedology. University of Alberta, Edmonton

    Google Scholar 

  • McGill WB, Rowell MJ, Westlake DWS (1981) Biochemistry, ecology and microbiology of petroleum components. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Marcel Dekker, New York, pp 229–296

    Google Scholar 

  • Mueller JG, Chapman PJ, Pritchard PH (1989) Creosote-contaminated sites: their potential for bioremediation. Environ Sci Technol 23:1197–1201

    Article  CAS  Google Scholar 

  • Navarro-Gonzalez R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, De la Rosa J, Small AM, Quinn RC, Grunthaner FJ, Caceres L, Gomez-Silva B, McKay CP (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302:1018–1021

    Article  CAS  Google Scholar 

  • Odu CTI (1972) Microbiology of soils contaminated with petroleum hydrocarbons. In: Extent of contamination and some soil and microbial properties after contamination. J Inst Petrol 58:201–208

    CAS  Google Scholar 

  • Pal D, Overcash MR (1978) Plant-soil assimilative capacity for oils. In: Proceedings of the 85th National Meeting of the American Institute of Chemical Engineers, Philadelphia

    Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry, Academic, New York

    Google Scholar 

  • Pfender WF (1996) Bioremediation bacteria to protect plants in pentachlorophenol-contaminated soil. J Environ Qual 25:1256–1260

    Article  CAS  Google Scholar 

  • Polonenko DR, Scher FM, Kloepper JW, Singleton CA, Laliberte M, Zaleska I (1987) Effects of root colonizing bacteria on nodulation of soybean roots by Bradyrhizobium japonicum. Can J Microbiol 33:498–503

    Article  Google Scholar 

  • Prantera MT, Drozdowicz A, Gomes-Leite S, Soares-Rosado A (2002) Degradation of gasoline aromatic hydrocarbons by two N2-fixing soil bacteria. Biotechnol Lett 24:85–89

    Article  CAS  Google Scholar 

  • Radwan SS (1990) Gulf oil spill. Nature 350:456

    Article  Google Scholar 

  • Radwan SS (2008) Microbiology of oil-contaminated desert soils and coastal areas in the Arabian Gulf region. In: Dion P, Chandra SN (eds) Microbiology of extreme soils. Soil biology Series 13. Springer, Berlin, pp 275–298

    Chapter  Google Scholar 

  • Radwan SS, Al-Awadhi H, Sorkhoh NA, El-Nemr IM (2000a) Cropping as a phytoremediation practice for oily desert soil with reference to crop safety as food. Int J Phytoremed 2:383–396

    Article  CAS  Google Scholar 

  • Radwan SS, Al-Awadhi H, Sorkhoh NA, El-Nemr I (1998a) Rhizospheric hydrocarbon-utilizing microorganisms as potential contributors to phytoremediation for oily Kuwaiti desert. Microbiol Res 153:247–251

    CAS  Google Scholar 

  • Radwan SS, Al-Mailem D, El-Nemr I, Salamah S (2000b) Enhanced remediation of hydrocarbon-contaminated desert soil fertilized with organic carbons. Int Biodet Biodeg 46:129–132

    Article  CAS  Google Scholar 

  • Radwan SS, Al-Muteirie AS (2001) Vitamin requirements of hydrocarbon-utilizing soil bacteria. Microbiol Res 155:301–307

    CAS  Google Scholar 

  • Radwan SS, Dashti N, El-Nemr IM (2005b) Enhancing the growth of Vicia faba plants by microbial inoculation to improve their phytoremediation potential for oily desert areas. Int J Phytoremed 7:19–32

    Article  CAS  Google Scholar 

  • Radwan SS, Dashti N, El-Nemr IM, Khanafer M (2007b) Hydrocarbon utilization by nodule bacteria and plant growth-promoting rhizobacteria. Int J Phytoremed 9:1–11

    Article  CAS  Google Scholar 

  • Radwan SS, Barabas G, Sorkhoh NA, Damjanovic S, Szabo I, Szollo”si J, Matko J, Penyige A, Hirano T, Szallo M (1998b) Hydrocarbon uptake by Streptomyces. FEMS Microbiol Lett 169:87–94

    Article  CAS  Google Scholar 

  • Radwan SS, Sorkhoh NA (1993) Lipids of n-alkane-utilizing microorganisms and their application potential. Adv Appl Microbiol 39:29–90

    Article  CAS  Google Scholar 

  • Radwan SS, Sorkhoh NA, Al-Hasan RH (1995a) Self-cleaning and bioremediation potential of the Arabian Gulf. In: Cheremisinoff P (ed) Encyclopedia of Environmental Control Technology, vol 9. Gulf Publishing, Houston, pp 901–924

    Google Scholar 

  • Radwan SS, Sorkhoh NA, El-Nemr I (1995b) Oil-biodegradation around roots. Nature 376:302

    Article  CAS  Google Scholar 

  • Radwan SS, Sorkhoh NA, El-Nemr I, El-Desouky AF (1997) A feasibility study on seeding as a bioremediation practice for the oily Kuwaiti desert. J Appl Microbiol 83:353–358

    Article  Google Scholar 

  • Radwan SS, Sorkhoh NA, Fardoun F, Al-Hasan RH (1995c) Soil managements enhancing hydrocarbon biodegradation in the polluted Kuwaiti desert. Appl Microbiol Biotechnol 44:265–270

    Article  CAS  Google Scholar 

  • Redchitz TI (1980) Fatty incorporations in Aspergilllus mycelium during submerged cultivation in media with hydrocarbons. Microbiol Zh 42:596–600

    Google Scholar 

  • Redchitz TI, Koval EZ (1979) Formation of volutin inclusions in the mycelium of aspergilli growing on media with hydrocarbons. Mikrobiol Zh 41:34–39

    Google Scholar 

  • Reddy BR, Sethunathan N (1983) Mineralization of parathion in rice rhizosphere. Appl Environ Microbiol 45:826–829

    CAS  Google Scholar 

  • Rehm H-J, Reiff I (1981) Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Adv Biochem Eng 19:175–216

    CAS  Google Scholar 

  • Reilley KA, Banks MK, Schab AP (1996) Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J Environ Qual 25: 212–219

    CAS  Google Scholar 

  • Rosenberg E (1993) Microorganisms to combat pollution. Kluwer, Dordrecht

    Google Scholar 

  • Rosenberg E (2006) Hydrocarbon-oxidizing bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria, 3rd edn, vol 2. Springer, Berlin, pp 564–577

    Google Scholar 

  • Sandmann ERIC, Loos MA (1984) Enumeration of 2,4-D degrading microorganisms in soils and crop plant rhizospheres using indicator media, high populations with sugar cane (Saccharum officinarum). Chemosphere 13:1073–1084

    Article  CAS  Google Scholar 

  • Sato K (1994) Effect of nutrients on interaction between pesticide pentachlorophenol and microorganisms in soil. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology. American Chemical Society, Washington, DC, pp 43–55

    Chapter  Google Scholar 

  • Schlesinger WH, Pippin J, Wallenstein M, Hofmockel K, Klepeis D, Hahall B (2003) Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert. Ecology 84:3222–3231

    Article  Google Scholar 

  • Scott GL, Finnerty WR (1966) Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter species. J Bacteriol 127:481–489.

    Google Scholar 

  • Seibert K, Fuehr F, Cheng HH (1981) Experiments on the degradation of atrazine in the maize rhizosphere. In: Proceedings of the Theory and Practical Use of Soil Applied Herbicides Symposium. European Weed Resource Society, Paris, France, pp 137–146

    Google Scholar 

  • Shann JR, Boyle JJ (1994) Influence of plant species on in situ rhizosphere degradation. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology. American Chemical Society, Washington, DC, pp 70–81

    Chapter  Google Scholar 

  • Song HG, Wang X, Bartha R (1990) Bioremediation potential of terrestrial fuel spills. Appl Environ Microbiol 56:652–656

    CAS  Google Scholar 

  • Sorkhoh NA, Al-Hasan RH, Khanafer M, Radwan SS (1995) Establishment of oil-degrading bacteria associated with cyanobacteria in oil-polluted soil. J Appl Bacteriol 78:194–199

    CAS  Google Scholar 

  • Sorkhoh NA, Ghannoum MA, Ibrahim AS, Stretton RJ, Radwan SS (1990) Crude oiland hydrocarbon degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait. Environ Pollut 65:1–17

    Article  CAS  Google Scholar 

  • Sorkhoh NA, Ibrahim AS, Ghannoum MA, Radwan SS (1993) High-temperature hydrocarbon degradation by Bacillus stearothermophilus from oil-polluted Kuwait desert. Appl Microbiol Biotechnol 39:123–126

    CAS  Google Scholar 

  • Spriggs T, Tangaris S, Nzengung VA, Nwokike B (2003) Phytoremediation of chlorinated solvent plume in Orlando, Florida. In: Seventh International in situ and on-site bioremediation symposium. Battelle Press, Columbus OH

    Google Scholar 

  • Stevenson FJ (1966) Lipids in soils. J Am Oil Chem Soc 43:203–210

    Article  CAS  Google Scholar 

  • Stoner DL (1994) Biotechnology for the treatment of hazardous waste. Lewis, Boca Raton

    Google Scholar 

  • Van Hamme JD, Singh A, Ward O (2003) Recent advances in petroleum microbiology. Microbiol Molec Biol Rev 67:503–549

    Article  CAS  Google Scholar 

  • Vevrek MC, Campbell WJ (2002) Identification of plant traits that enhance biodegradation of oil, 9th Annual International Petroleum Environmental Conference, Oct. 22–25, Albuquerque

    Google Scholar 

  • Walton BT, Anderson TA (1990) Microbial degradation of trichloroethylene in the rhizosphere: potential application to biological remediation of waste sites. Appl Environ Microbiol 56:1012–1016

    CAS  Google Scholar 

  • Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing S, Lacap DC, Gomez-Silva B, Amundson R, Friedmann EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthesis and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398

    Article  Google Scholar 

  • Widdel F, Boetius A, Rabus R (2006) Anaerobic biodegradation of hydrocarbons including methane. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria, 3rd edn., vol 2. Springer, Berlin, pp 1028–1049

    Google Scholar 

  • Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 4:415–422

    Article  Google Scholar 

  • Zarilla KA, Perry JJ (1984) Thermoleophilum album gen. nov. and sp. nov., a bacterium obligate for thermophily and n-alkane substrates. Arch Microbiol 137:286–290

    Article  CAS  Google Scholar 

  • Zhang F, Dashti N, Hynes R, Smith DL (1996) Plant growth-promoting rhizobacteria and soybean (Glycine max L. Merr) nodulation and nitrogen fixation at suboptimal zone temperature. Ann Bot 77: 453–459

    Article  Google Scholar 

  • Zhang F, Dashti N, Hynes R, Smith DL (1997) Plant growth-promoting rhizobacteria and soybean (Glycine max L. Merr) growth and physiology at suboptimal root zone temperature. Ann Bot 79: 243–249

    Article  Google Scholar 

Download references

Acknowledgments

Some of the unpublished findings mentioned in this chapter were results of work done within the Research Project number SLO7/03. Assistant Samar Salamah is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Radwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Radwan, S. (2009). Phytoremediation for Oily Desert Soils. In: Singh, A., Kuhad, R., Ward, O. (eds) Advances in Applied Bioremediation. Soil Biology, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89621-0_15

Download citation

Publish with us

Policies and ethics