Skip to main content

Offset Approach to Defining 3D Digital Lines

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5358))

Included in the following conference series:

Abstract

In this paper we investigate an approach of constructing a 3D digital line by taking the integer points within an offset of a certain radius of the line. Alternatively, we also investigate digital lines obtained through a “pseudo-offset” defined by a parallelepiped enclosing the integer points around the line. We show that if the offset radius (resp. side of the parallelepiped section) is greater than \(\sqrt{3}\) (resp. 2\(\sqrt{3}\)), then the digital line is at least 1-connected. Extensive experiments show that the lines obtained feature satisfactory appearance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andres, E.: Discrete linear objects in dimension n: the standard model. Graphical Models 65(1-3), 92–111 (2003)

    Article  MATH  Google Scholar 

  2. Anton, F.: Voronoi diagrams of semi-algebraic sets, Ph.D. thesis, The University of British Columbia, Vancouver, British Columbia, Canada (January 2004)

    Google Scholar 

  3. Anton, F., Emiris, I., Mourrain, B., Teillaud, M.: The offset to an algebraic curve and an application to conics. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K., et al. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 683–696. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Arrondo, E., Sendra, J., Sendra, J.R.: Genus formula for generalized offset curves. J. Pure and Applied Algebra 136(3), 199–209 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coeurjolly, D., Debled-Rennesson, I., Teytaud, O.: Segmentation and length estimation of 3D discrete curves. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 295–313. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  6. Cohen-Or, D., Kaufman, A.: 3D Line voxelization and connectivity control. IEEE Computer Grpahics & Applications 17(6), 80–87 (1997)

    Article  Google Scholar 

  7. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York (1998)

    Book  MATH  Google Scholar 

  8. Debled-Rennesson, I.: Etude et reconnaissance des droites et plans discrets, Ph.D. thesis, Université Louis Pasteur, Strasbourg, France (1995)

    Google Scholar 

  9. Debled-Rennesson, I., Domenjoud, E., Jamet, D.: Arithmetic Discrete Parabolas. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 480–489. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Debled-Rennesson, I., Rémy, J.-L., Rouyer-Degli, J.: Linear segmentation of discrete curves into blurred segments. Discrete Applied Mathematics 151(1-3), 122–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Figueiredo, O., Reveillès, J.-P.: New results about 3D digital lines. In: Proc. Internat. Conference Vision Geometry V, SPIE, vol. 2826, pp. 98–108 (1996)

    Google Scholar 

  12. Fiorio, C., Jamet, D., Toutant, J.-L.: Discrete Circles: an Arithmetical Approach Based On Norms. In: Proc. Internat. Conference Vision-Geometry XIV, SPIE, vol. 6066, p. 60660C (2006)

    Google Scholar 

  13. Hoffmann, C.M., Vermeer, P.J.: Eliminating extraneous solutions for the sparse resultant and the mixed volume. J. Symbolic Geom. Appl. 1(1), 47–66 (1991)

    MATH  Google Scholar 

  14. Kim, C.E.: Three dimensional digital line segments. IEEE Transactions on Pattern Analysis and Machine Intellignece 5(2), 231–234 (1983)

    Article  MATH  Google Scholar 

  15. Klette, R., Rosenfeld, A.: Digital Geometry – Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  16. Kong, T.Y.: Digital topology. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71. Kluwer, Boston (2001)

    Google Scholar 

  17. Rosenfeld, A.: Connectivity in digital pictures. Journal of the ACM 17(3), 146–160 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rosenfeld, A., Klette, R.: Digital starightness – a review. Discrete Applied Mathematics 139(1-3), 197–230 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Toutant, J.-L.: Characterization of the closest discrete approximation of a line in the 3-dimensional space. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4291, pp. 618–627. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brimkov, V.E., Barneva, R.P., Brimkov, B., de Vieilleville, F. (2008). Offset Approach to Defining 3D Digital Lines. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89639-5_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89638-8

  • Online ISBN: 978-3-540-89639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics