Skip to main content

Threshold Selection for Segmentation of Dense Objects in Tomograms

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5358))

Included in the following conference series:

Abstract

Tomographic reconstructions are often segmented to extract valuable quantitative information. In this paper, we consider the problem of segmenting a dense object of constant density within a continuous tomogram, by means of global thresholding. Selecting the proper threshold is a nontrivial problem, for which hardly any automatic procedures exists. We propose a new method that exploits the available projection data to accurately determine the optimal global threshold. Results from simulation experiments show that our algorithm is capable of finding a threshold that is close to the optimal threshold value.

This work was financially supported by the IBBT, Flanders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Herman, G.T., Kuba, A.: Discrete Tomography: Foundations, Algorithms and Applications. Birkhäuser (1999)

    Google Scholar 

  2. Eichler, M.J., Kim, C.H., Müller, R., Guo, X.E.: Impact of thresholding techniques on micro-CT image based computational models of trabecular bone. In: ASME Advances in Bioengineering, vol. 48, pp. 215–216 (September 2000)

    Google Scholar 

  3. Glasbey, C.A.: An analysis of histogram-based thresholding algorithms. Graphical Models and Image Processing 55(6), 532–537 (1993)

    Article  Google Scholar 

  4. Rosenfeld, A., Torre, P.: Histogram concavity analysis as an aid in threshold selection. IEEE Trans. Syst., Man, Cybern. 13, 231–235 (1983)

    Article  Google Scholar 

  5. Ridler, T.W., Calvard, S.: Picture thresholding using an iterative selection method. IEEE Trans. Syst., Man, Cybern. 8, 630–632 (1978)

    Article  Google Scholar 

  6. Otsu, N.: A threshold selection method from gray level histograms. IEEE Trans. Syst., Man, Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  7. Yu, X., YlaJaaski, J.: A new algorithm for image segmentation based in region growing and edge detection. In: Proc. Int. Symp. Circuits and Systems, vol. 1, pp. 516–519 (1991)

    Google Scholar 

  8. Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. In: Dougherty, E.R. (ed.) Mathematical Morphology in Image Processing, pp. 433–481. Marcel Dekker, New York (1993)

    Google Scholar 

  9. Batenburg, K.J., Sijbers, J.: Optimal threshold selection for tomogram segmentation by reprojection of the reconstructed image. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 563–570. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Batenburg, K.J., Sijbers, J.: Selection of Local Thresholds for Tomogram Segmentation by Projection Distance Minimization. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 380–391. Springer, Heidelberg (2008)

    Chapter  MATH  Google Scholar 

  11. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. In: Volume Algorithms for reconstruction with non-diffracting sources, pp. 49–112. IEE Press, New York (1988)

    Google Scholar 

  12. Ludwig, D.: The Radon Transform on Euclidean space. Commun. Pure Appl. Math. 19, 49–81 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  13. Helgason, S.: The Radon Transform. Birkhäuser, Boston (1980)

    Book  MATH  Google Scholar 

  14. Gardner, R.J., Gritzmann, P.: Uniqueness and complexity in discrete tomography. In: Discrete Tomography: Foundations, Algorithms and Applications, pp. 85–111. Birkhäuser (1999)

    Google Scholar 

  15. Gregor, J., Benson, T.: Computational Analysis and Improvement of SIRT. IEEE Trans. Medical Imaging 27(7), 918–924 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Aarle, W., Batenburg, K.J., Sijbers, J. (2008). Threshold Selection for Segmentation of Dense Objects in Tomograms. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89639-5_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89638-8

  • Online ISBN: 978-3-540-89639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics