Skip to main content

Graph Augmentation via Metric Embedding

  • Conference paper
Principles of Distributed Systems (OPODIS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5401))

Included in the following conference series:

Abstract

Kleinberg [17] proposed in 2000 the first random graph model achieving to reproduce small world navigability, i.e. the ability to greedily discover polylogarithmic routes between any pair of nodes in a graph, with only a partial knowledge of distances. Following this seminal work, a major challenge was to extend this model to larger classes of graphs than regular meshes, introducing the concept of augmented graphs navigability. In this paper, we propose an original method of augmentation, based on metrics embeddings. Precisely, we prove that, for any ε> 0, any graph G such that its shortest paths metric admits an embedding of distorsion γ into ℝd can be augmented by one link per node such that greedy routing computes paths of expected length \(O(\frac1\varepsilon\gamma^d\log^{2+\varepsilon}n)\) between any pair of nodes with the only knowledge of G. Our method isolates all the structural constraints in the existence of a good quality embedding and therefore enables to enlarge the characterization of augmentable graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assouad, P.: Plongements lipschitzien dans ℝn. Bull. Soc. Math. France 111(4), 429–448 (1983)

    MathSciNet  MATH  Google Scholar 

  2. Abraham, I., Bartal, Y., Neiman, O.: Advances in metric embedding theory. In: Proceeeding of the the 38th annual ACM symposium on Theory of Computing (STOC), pp. 271–286 (2006)

    Google Scholar 

  3. Abraham, I., Bartal, Y., Neiman, O.: Embedding Metric Spaces in their Intrinsic Dimension. In: Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms (SODA), pp. 363–372 (2008)

    Google Scholar 

  4. Abraham, I., Gavoille, C.: Object location using path separators. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 188–197 (2006)

    Google Scholar 

  5. Bourgain, J.: On Lipschitz embedding of finite metric spaces in Hilbert space. Israel Journal of Mathematics 52, 46–52 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A decentralized network coordinate system. In: ACM SIGCOMM (2004)

    Google Scholar 

  7. Duchon, P., Hanusse, N., Lebhar, E., Schabanel, N.: Could any graph be turned into a small-world? Theoretical Computer Science 355(1), 96–103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duchon, P., Hanusse, N., Lebhar, E., Schabanel, N.: Towards small world emergence. In: 18th Annual ACM Symp. on Parallel Algorithms and Architectures (SPAA), pp. 225–232 (2006)

    Google Scholar 

  9. Dodds, P.S., Muhamad, R., Watts, D.J.: An experimental study of search in global social networks. Science 301, 827–829 (2003)

    Article  Google Scholar 

  10. Fraigniaud, P.: Greedy routing in tree-decomposed graphs: a new perspective on the small-world phenomenon. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 791–802. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Fraigniaud, P., Gavoille, C.: Polylogarithmic network navigability using compact metrics with small stretch. In: 20th Annual ACM Symp. on Parallel Algorithms and Architectures (SPAA), pp. 62–69 (2008)

    Google Scholar 

  12. Fraigniaud, P., Gavoille, C., Kosowski, A., Lebhar, E., Lotker, Z.: Universal Augmentation Schemes for Network Navigability: Overcoming the \(\sqrt{n}\)-Barrier. In: Proceedings of the 19th Annual ACM Symposium on Parallel Algorithms and Architecture (SPAA), pp. 1–7 (2007)

    Google Scholar 

  13. Fraigniaud, P., Lebhar, E., Lotker, Z.: A Doubling Dimension Threshold Θ(loglogn) for Augmented Graph Navigability. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 376–386. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-distortion embeddings. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 534–543 (2003)

    Google Scholar 

  15. Indyk, P.: Algorithmic aspects of geometric embeddings. In: Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science, FOCS (2001)

    Google Scholar 

  16. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz maps into a Hilbert space. Contemporary mathematics 26, 189–206 (1984)

    Article  MATH  Google Scholar 

  17. Kleinberg, J.: The Small-World Phenomenon: An Algorithmic Perspective. In: 32nd ACM Symp. on Theo. of Comp. (STOC), pp. 163–170 (2000)

    Google Scholar 

  18. Kleinberg, J.: Small-World Phenomena and the Dynamics of Information. Advances in Neural Information Processing Systems (NIPS) 14 (2001)

    Google Scholar 

  19. Kleinberg, J.: Complex networks and decentralized search algorithm. In: Intl. Congress of Math, ICM (2006)

    Google Scholar 

  20. Matousek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  21. Milgram, S.: The Small-World Problem. Psychology Today, 60–67 (1967)

    Google Scholar 

  22. Slivkins, A.: Distance estimation and object location via rings of neighbors. In: 24th Annual ACM Symp. on Princ. of Distr. Comp. (PODC), pp. 41–50 (2005)

    Google Scholar 

  23. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lebhar, E., Schabanel, N. (2008). Graph Augmentation via Metric Embedding. In: Baker, T.P., Bui, A., Tixeuil, S. (eds) Principles of Distributed Systems. OPODIS 2008. Lecture Notes in Computer Science, vol 5401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92221-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92221-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92220-9

  • Online ISBN: 978-3-540-92221-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics