Skip to main content

Alginate Gene Regulation

  • Chapter
  • First Online:
Alginates: Biology and Applications

Part of the book series: Microbiology Monographs ((MICROMONO,volume 13))

Abstract

Alginate is an important virulence factor of Pseudomonas aeruginosa, and so our understanding of alginate gene regulation is best understood in this species. Expression of the algD operon for alginate biosynthesis is only highly expressed in mucoid clinical isolates that usually have pathoadaptive mucA mutations. The three major regulators of the algD promoter (PalgD) are AlgR, AlgB, and AmrZ. Each binds to DNA sites relatively far upstream from the start of algD transcription. AlgR and AlgB are two-component regulators. AmrZ is an Arc-like positive regulator of PalgD, but can also be a negative regulator. A global role for these regulators is also emerging. Expression of PalgD and the regulators are under the control of σ22, an extracytoplasmic function alternative sigma factor. σ22 activity is under posttranscriptional control by membrane-bound MucAB. Release of σ22 sequestration can occur as a result of cell wall stress, which activates proteases, including AlgW (DegS-like) protease, to degrade MucA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alba BM, Gross CA (2004) Regulation of the Escherichia coli sigma-dependent envelope stress response. Mol Microbiol 52:613–619

    Article  PubMed  CAS  Google Scholar 

  • Baltimore RS, Mitchell M (1982) Immunologic investigations of mucoid strains of Pseudomonas aeruginosa: comparison of susceptibility to opsonic antibody in mucoid and nonmucoid strains. J Infect Dis 141:238–247

    Google Scholar 

  • Baynham P, Wozniak D (1996) Identification and characterization of AlgZ, an AlgT-dependent DNA-binding protein required for Pseudomonas aeruginosa algD transcription. Mol Microbiol 22:97–108

    Article  PubMed  CAS  Google Scholar 

  • Baynham PJ, Brown AL, Hall LL, Wozniak DJ (1999) Pseudomonas aeruginosa AlgZ, a ribbon-helix-helix DNA-binding protein, is essential for alginate synthesis and algD transcriptional activation. Mol Microbiol 33:1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Baynham PJ, Ramsey DM, Gvozdyev BV, Cordonnier EM, Wozniak DJ (2006) The Pseudomonas aeruginosa ribbon-helix-helix DNA-binding protein AlgZ (AmrZ) controls twitching motility and biogenesis of type IV pili. J Bacteriol 188:132–140

    Article  PubMed  CAS  Google Scholar 

  • Belete B, Lu H, Wozniak DJ (2008) Pseudomonas aeruginosa AlgR regulates type IV pilus biosynthesis by activating transcription of the fimU-pilVWXY1Y2E operon. J Bacteriol 190:2023–2030

    Article  PubMed  CAS  Google Scholar 

  • Berry A, DeVault JD, Chakrabarty AM (1989) High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains. J. Bacteriol. 171:2312–2317

    PubMed  CAS  Google Scholar 

  • Boucher JC, Martinez-Salazar J, Schurr MJ, Mudd MH, Yu H, Deretic V (1996) Two distinct loci affecting conversion to mucoidy in Pseudomonas aeruginosa in cystic fibrosis encode homologs of the serine protease HtrA. J Bacteriol 178:511–523

    PubMed  CAS  Google Scholar 

  • Boucher JC, Yu H, Mudd MH, Deretic V (1997) Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun 65:3838–3846

    PubMed  CAS  Google Scholar 

  • Boucher JC, Schurr MJ, Deretic V (2000) Dual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism. Mol Microbiol 36:341–351

    Article  PubMed  CAS  Google Scholar 

  • Brauer AL, Wozniak DJ, Murphy TF (2008) Characterization of mucoid Pseudomonas aeruginosa isolated in chronic obstructive pulmonary disease. In: Abstracts of the 108th general meeting of the American Society for Microbiology. American Society for Microbiology, Boston

    Google Scholar 

  • Carterson AJ, Morici LA, Jackson DW, Frisk A, Lizewski SE, Jupiter R, Simpson K, Kunz DA, Davis SH, Schurr JR, Hassett DJ, Schurr MJ (2004) The transcriptional regulator AlgR controls cyanide production in Pseudomonas aeruginosa. J Bacteriol 186:6837–6844

    Article  PubMed  CAS  Google Scholar 

  • Chitnis CE, Ohman DE (1993) Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol Microbiol 8:583–590

    Article  PubMed  CAS  Google Scholar 

  • Delic-Attree I, Toussaint B, Froger A, Willison JC, Vignais PM (1996) Isolation of an IHF-deficient mutant of a Pseudomonas aeruginosa mucoid isolate and evaluation of the role of IHF in algD gene expression. Microbiology 142:2785–2793

    Article  PubMed  CAS  Google Scholar 

  • Delic-Attree I, Toussaint B, Garin J, Vignais PM (1997) Cloning, sequence and mutagenesis of the structural gene of Pseudomonas aeruginosa CysB, which can activate algD transcription. Mol Microbiol 24:1275–1284

    Article  PubMed  CAS  Google Scholar 

  • Deretic V, Konyecsni WM (1989) Control of mucoidy in Pseudomonas aeruginosa: transcriptional regulation of algR and identification of the second regulatory gene, algQ. J Bacteriol 171:3680–3688

    PubMed  CAS  Google Scholar 

  • Deretic V, Konyecsni WM (1990) A procaryotic regulatory factor with a histone H1-like carboxy-terminal domain: clonal variation of repeats within algP, a gene involved in regulation of mucoidy in Pseudomonas aeruginosa. J Bacteriol 172:5544–5554

    PubMed  CAS  Google Scholar 

  • Deretic V, Gill JF, Chakrabarty AM (1987) Gene algD coding for GDP-mannose dehydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa. J Bacteriol 169:351–358

    PubMed  CAS  Google Scholar 

  • Deretic V, Dikshit R, Konyecsni M, Chakrabarty AM, Misra TK (1989) The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. J Bacteriol 171:1278–1283

    PubMed  CAS  Google Scholar 

  • Deretic V, Schurr MJ, Boucher JC, Deretic V, Schurr MJ, Boucher JC, Martin DW (1994) Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress and regulation of bacterial virulence by alternative sigma factors. J Bacteriol 176:2773–2780

    PubMed  CAS  Google Scholar 

  • DeVault JD, Hendrickson W, Kato J, Chakrabarty AM (1991) Environmentally regulated algD promoter is responsive to the cAMP receptor protein in Escherichia coli. Mol Microbiol 5:2503–2509

    Article  PubMed  CAS  Google Scholar 

  • DeVries CA, Ohman DE (1994) Mucoid to nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternative sigma factor, and shows evidence for autoregulation. J Bacteriol 176:6677–6687

    PubMed  CAS  Google Scholar 

  • Evans LR, Linker A (1973) Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J Bacteriol 116:915–924

    PubMed  CAS  Google Scholar 

  • Firoved AM, Deretic V (2003) Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa. J Bacteriol 185:1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Flynn JL, Ohman DE (1988a) Cloning of genes from mucoid Pseudomonas aeruginosa which control spontaneous conversion to the alginate production phenotype. J Bacteriol 170:1452–1460

    CAS  Google Scholar 

  • Flynn JL, Ohman DE (1988b) Use of a gene replacement cosmid vector for cloning alginate conversion genes from mucoid and nonmucoid Pseudomonas aeruginosa strains: algS controls expression of algT. J Bacteriol 170:3228–3236

    CAS  Google Scholar 

  • Frederiksen B, Koch C, Høiby N (1997) Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. Pediatr Pulmonol 23:330–335

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara S, Zielinski NA, Chakrabarty AM (1993) Enhancer-like activity of AlgR1-binding site in alginate gene activation: positional, orientational, and sequence specificity. J Bacteriol 175:5452–5459

    PubMed  CAS  Google Scholar 

  • Goldberg JB, Dahnke T (1992) Pseudomonas aeruginosa AlgB, which modulates the expression of alginate, is a member of the NtrC subclass of prokaryotic regulators. Mol Microbiol 6:59–66

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JB, Ohman DE (1984) Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J Bacteriol 158:1115–1121

    PubMed  CAS  Google Scholar 

  • Goldberg JB, Ohman DE (1987) Construction and characterization of Pseudomonas aeruginosa algB mutants: role of algB in high-level production of alginate. J Bacteriol 169:1593–1602

    PubMed  CAS  Google Scholar 

  • Goldberg JB, Gorman WL, Flynn JL, Ohman DE (1993) A mutation in algN permits trans-activation of alginate production by algT in Pseudomonas species. J Bacteriol 175:1303–1308

    PubMed  CAS  Google Scholar 

  • Govan JRW, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574

    PubMed  CAS  Google Scholar 

  • Govan JRW, Harris GS (1986) Pseudomonas aeruginosa and cystic fibrosis: unusual bacterial adaptation and pathogenesis. Microbiol Sci 3:302–308

    PubMed  CAS  Google Scholar 

  • Hassett DJ (1996) Anaerobic production of alginate by Pseudomonas aeruginosa: alginate restricts diffusion of oxygen. J Bacteriol 178:7322–7325

    PubMed  CAS  Google Scholar 

  • Helmann JD (2002) The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46:47–110

    Article  PubMed  CAS  Google Scholar 

  • Hershberger CD, Ye RW, Parsek MR, Xie Z, Chakrabarty AM (1995) The algT (algU) gene of Pseudomonas aeruginosa, a key regulator involved in alginate biosynthesis, encodes an alternative s factor (sE). Proc Natl Acad Sci U S A 92:7941–7945

    Article  PubMed  CAS  Google Scholar 

  • Hoiby N, Olling S (1977) Pseudomonas aeruginosa infection in cystic fibrosis: bactericidal effect of serum from normal individuals and patients with cystic fibrosis on P. aeruginosa strains from patients with cystic fibrosis or other diseases. Acta Pathol Microbiol Scand C 85:107–114

    Google Scholar 

  • Kato J, Chakrabarty AM (1991) Purification of the regulatory protein AlgR1 and its binding in the far upstream region of the algD promoter in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 88:1760–1764

    Article  PubMed  CAS  Google Scholar 

  • Kato J, Misra TK, Chakrabarty AM (1990) AlgR3, a protein resembling eukaryotic histone H1, regulates alginate synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 87:2887–2891

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Schlictman D, Shankar S, Xie Z, Chakrabarty A, Kornberg A (1998) Alginate, inorganic polyphosphate, GTP and ppGpp synthesis co-regulated in Pseudomonas aeruginosa: implications for stationary phase survival and synthesis of RNA/DNA precursors. Mol Microbiol 27:717–725

    Article  PubMed  CAS  Google Scholar 

  • Lam J, Chan R, Lam K, Costerton JRW (1980) Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 28:546–556

    PubMed  CAS  Google Scholar 

  • Leech AJ, Sprinkle A, Wood L, Wozniak DJ, Ohman DE (2008) The NtrC family regulator AlgB, which controls alginate biosynthesis in mucoid Pseudomonas aeruginosa, binds directly to the algD promoter. J Bacteriol 190:581–589

    Article  PubMed  CAS  Google Scholar 

  • Linker A, Jones RS (1966) A new polysaccharide resembling alginic acid isolated from Pseudomonads. J Biol Chem 241:3845–3851

    PubMed  CAS  Google Scholar 

  • Lizewski SE, Schurr JR, Jackson DW, Frisk A, Carterson AJ, Schurr MJ (2004) Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. J Bacteriol 186:5672–5684

    Article  PubMed  CAS  Google Scholar 

  • Lonetto MA, Brown KL, Rudd KE, Buttner MJ (1994) Analysis of Streptomyces coelicolor SigE gene reveals the existence of a subfamily of eubacterial RNA polymerase s factors involved in the regulation of extracytoplasmic functions. Proc Natl Acad Sci U S A 91:7573–7577

    Article  PubMed  CAS  Google Scholar 

  • Ma S, Wozniak DJ, Ohman DE (1997) Identification of the histidine protein kinase KinB in Pseudomonas aeruginosa and its phosphorylation of the alginate regulator AlgB. J Biol Chem 272:17952–17960

    Article  PubMed  CAS  Google Scholar 

  • Ma S, Selvaraj U, Ohman DE, Quarless R, Hassett DJ, Wozniak DJ (1998) Phosphorylation-independent activity of the response regulators AlgB and AlgR in promoting alginate biosynthesis in mucoid Pseudomonas aeruginosa. J Bacteriol 180:956–968

    PubMed  CAS  Google Scholar 

  • Malhotra S, Silo-Suh LA, Mathee K, Ohman DE (2000) Proteome analysis of the effect of mucoid conversion on global protein expression in Pseudomonas aeruginosa strain PAO1 shows induction of the disulfide bond isomerase, DsbA. J Bacteriol 182:6999–7006

    Article  PubMed  CAS  Google Scholar 

  • Martin DW, Schurr MJ, Mudd MH, Deretic V (1993a) Differentiation of Pseudomonas aeruginosa into the alginate-producing form: inactivation of mucB causes conversion to mucoidy. Mol Microbiol 9:497–506

    Article  CAS  Google Scholar 

  • Martin DW, Schurr MJ, Mudd MH, Govan JRW, Holloway BW, Deretic V (1993b) Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A 90:8377–8381

    Article  CAS  Google Scholar 

  • Mathee K, McPherson CJ, Ohman DE (1997) Posttranslational control of the algT (algU)-encoded σ22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol 179:3711–3720

    PubMed  CAS  Google Scholar 

  • Mathee K, Ciofu O, Sternberg CK, Lindum P, Campbell J, Jensen P, Johnsen A, Givskov M, Ohman D, Molin S, Høiby N, Kharazmi A (1999) Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:1349–1357

    Article  PubMed  CAS  Google Scholar 

  • Merighi M, Lee VT, Hyodo M, Hayakawa Y, Lory S (2007) The second messenger bis-(3′–5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 65:876–895

    Article  PubMed  CAS  Google Scholar 

  • Missiakas D, Raina S (1998) The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28:1059–1066

    Article  PubMed  CAS  Google Scholar 

  • Mohr CD, Martin DW, Konyecsni WM, Govan JRW, Lory S, Deretic V (1990) Role of the far-upstream sites of the algD promoter and the algR and rpoN genes in environmental modulation of mucoidy in Pseudomonas aeruginosa. J Bacteriol 172:6576–6580

    PubMed  CAS  Google Scholar 

  • Mohr CD, Hibler NS, Deretic V (1991) AlgR, a response regulator controlling mucoidy in Pseudomonas aeruginosa, binds to the FUS sites of the algD promoter located unusually far upstream from the mRNA start site. J Bacteriol 173:5136–5143

    PubMed  CAS  Google Scholar 

  • Mohr CD, Leveau JHJ, Krieg DP, Hibler NS, Deretic V (1992) AlgR-Binding sites within the algD promoter make up a set of inverted repeats separated by a large intervening segment of DNA. J Bacteriol 174:6624–6633

    PubMed  CAS  Google Scholar 

  • Morici LA, Carterson AJ, Wagner VE, Frisk A, Schurr JR, Honer zu Bentrup K, Hassett DJ, Iglewski BH, Sauer K, Schurr MJ (2007) Pseudomonas aeruginosa AlgR represses the Rhl quorum-sensing system in a biofilm-specific manner. J Bacteriol 189:7752–7764

    Article  PubMed  CAS  Google Scholar 

  • Nikolskaya AN, Galperin MY (2002) A novel type of conserved DNA-binding domain in the transcriptional regulators of the AlgR/AgrA/LytR family. Nucleic Acids Res 30:2453–2459

    Article  PubMed  CAS  Google Scholar 

  • Oglesby LL, Jain S, Ohman DE (2008) Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology 154:1605–1615

    Article  PubMed  CAS  Google Scholar 

  • Ohman DE, Chakrabarty AM (1981) Genetic mapping of chromosomal determinants for the production of the exopolysaccharide alginate in a Pseudomonas aeruginosa cystic fibrosis isolate. Infect Immun 33:142–148

    PubMed  CAS  Google Scholar 

  • Ohman DE, Mathee K, McPherson CJ, DeVries CA, Ma S, Wozniak DJ, Franklin MJ (1996) Regulation of the alginate (algD) operon in Pseudomonas aeruginosa. In: Nakazawa T, Furukawa K, Haas D, Silver S (eds) Molecular biology of pseudomonads. American Society for Microbiology, Washington, pp 472–483

    Google Scholar 

  • Pedersen SS (1992) Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. APMIS Suppl 28:1–79

    PubMed  CAS  Google Scholar 

  • Pedersen SS, Moller H, Espersen F, Sørensen CH, Jensen T, Høiby N (1992) Mucosal immunity to Pseudomonas aeruginosa alginate in cystic fibrosis. Acta Pathol Microbiol Immunol Scand 100:326–334

    CAS  Google Scholar 

  • Pier GB, Coleman F, Grout M, Franklin M, Ohman DE (2001) Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect Immun 69:1895–1901

    Article  PubMed  CAS  Google Scholar 

  • Qiu D, Eisinger VM, Rowen DW, Yu HD (2007) Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 104:8107–8112

    Article  PubMed  CAS  Google Scholar 

  • Qiu D, Eisinger VM, Head NE, Pier GB, Yu HD (2008) ClpXP proteases positively regulate alginate overexpression and mucoid conversion in Pseudomonas aeruginosa. Microbiology 154:2119–2130

    Article  PubMed  CAS  Google Scholar 

  • Ramsey DM, Baynham PJ, Wozniak DJ (2005) Binding of Pseudomonas aeruginosa AlgZ to sites upstream of the algZ promoter leads to repression of transcription. J Bacteriol 187:4430–4443

    Article  PubMed  CAS  Google Scholar 

  • Reiling SA, Jansen JA, Henley BJ, Singh S, Chattin C, Chandler M, Rowen DW (2005) Prc protease promotes mucoidy in mucA mutants of Pseudomonas aeruginosa. Microbiology 151:2251–2261

    Article  PubMed  CAS  Google Scholar 

  • Sarkisova S, Patrauchan MA, Berglund D, Nivens DE, Franklin MJ (2005) Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms. J Bacteriol 187:4327–4337

    Article  PubMed  CAS  Google Scholar 

  • Schurr MJ, Deretic V (1997) Microbial pathogenesis in cystic fibrosis: co-ordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa. Mol Microbiol 24:411–420

    Article  PubMed  CAS  Google Scholar 

  • Schurr MJ, Martin DW, Mudd MH, Deretic V (1994) Gene cluster controlling conversion of alginate-overproducing phenotype in Pseudomonas aeruginosa: Functional analysis in a heterologous host and role in the instability of mucoidy. J Bacteriol 176:3375–3382

    PubMed  CAS  Google Scholar 

  • Schurr MJ, Yu H, Boucher JC, Hibler NS, Deretic V (1995) Multiple promoters and induction by heat shock of the gene encoding the alternative sigma factor AlgU (σE) which controls mucoidy in cystic fibrosis isolates of Pseudomonas aeruginosa. J Bacteriol 177:5670–5679

    PubMed  CAS  Google Scholar 

  • Schurr MJ, Yu H, Martinez-Salazar JM, Boucher JC, Deretic V (1996) Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. J Bacteriol 178:4997–5004

    PubMed  CAS  Google Scholar 

  • Schwarzmann S, Boring IIIJR (1971) Antiphagocytic effect of slime from a mucoid strain of Pseudomonas aeruginosa. Infect Immun 3:762–767

    PubMed  Google Scholar 

  • Seale TW, Thirkhill H, Tarpay M, Flux M, Rennert OM (1979) Serotypes and antibiotic susceptibilities of Pseudomonas aeruginosa isolates from single sputa of cystic fibrosis patients. J Clin Microbiol 9:72–78

    PubMed  CAS  Google Scholar 

  • Stover CK, X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F.S. L. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K.-S. Wong, Z. Wu, I. T. Paulsenk, J. Reizer, M. H. Saier, R. E. W. Hancock, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 959:959–964

    Google Scholar 

  • Suh S-J, Silo-Suh L, Woods D, Hassett D, West S, Ohman D (1999) Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol 181:3890–3897

    PubMed  CAS  Google Scholar 

  • Tart AH, Blanks MJ, Wozniak DJ (2006) The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates. J Bacteriol 188:6483–6489

    Article  PubMed  CAS  Google Scholar 

  • Totten PA, Lara JC, Lory S (1990) The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J Bacteriol 172:389–396

    PubMed  CAS  Google Scholar 

  • Whitchurch CB, Alm RA, Mattick JS (1996) The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 93:9839–9843

    Article  PubMed  CAS  Google Scholar 

  • Whitchurch CB, Erova TE, Emery JA, Sargent JL, Harris JM, Semmler AB, Young MD, Mattick JS, Wozniak DJ (2002) Phosphorylation of the Pseudomonas aeruginosa response regulator AlgR is essential for type IV fimbria-mediated twitching motility. J Bacteriol 184:4544–4554

    Article  PubMed  CAS  Google Scholar 

  • Wood LF, Ohman DE (2006) Independent regulation of MucD, an HtrA-like protease in Pseudomonas aeruginosa, and the role of its proteolytic motif in alginate gene regulation. J Bacteriol 188:3134–3137

    Article  PubMed  CAS  Google Scholar 

  • Wood LF, Leech AJ, Ohman DE (2006) Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of sigma (AlgT) and the AlgW and Prc proteases. Mol Microbiol 62:412–426

    Article  PubMed  CAS  Google Scholar 

  • Woolwine S, Wozniak D (1999) Identification of an Escherichia coli pepA homolog and its involvement in suppression of the algB phenotype in mucoid Pseudomonas aeruginosa. J Bacteriol 181:107–116

    PubMed  CAS  Google Scholar 

  • Wozniak DJ, Ohman DE (1991) Pseudomonas aeruginosa AlgB, a two-component response regulator of the NtrC family, is required for algD transcription. J Bacteriol 173:1406–1413

    PubMed  CAS  Google Scholar 

  • Wozniak DJ, Ohman DE (1993) Involvement of the alginate algT gene and integration host factor in the regulation of the Pseudomonas aeruginosa algB gene. J Bacteriol 175:4145–4153

    PubMed  CAS  Google Scholar 

  • Wozniak DJ, Ohman DE (1994) Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT. J Bacteriol 176:6007–6014

    PubMed  CAS  Google Scholar 

  • Xie ZD, Hershberger CD, Shankar S, Ye RW, Chakrabarty AM (1996) Sigma factor-anti-sigma factor interaction in alginate synthesis: inhibition of AlgT by MucA. J Bacteriol 178:4990–4996

    PubMed  CAS  Google Scholar 

  • Yu H, Schurr MJ, Deretic V (1995) Functional equivalence of Escherichia coli σE and Pseudomonas aeruginosa AlgU: E coli rpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in algU mutants of P. aeruginosa. J Bacteriol 177:3259–3268

    PubMed  CAS  Google Scholar 

  • Yu H, Mudd M, Boucher JC, Schurr MJ, Deretic V (1997) Identification of the algZ gene upstream of the response regulator algR and its participation in control of alginate production in Pseudomonas aeruginosa. J Bacteriol 179:187–193

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Veterans Administration Medical Research Funds, by a grant from the Cystic Fibrosis Foundation, and by Public Health Service grants AI-19146 and T32-AI-007617 from the National Institute of Allergy and Infectious Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis E. Ohman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohman, D.E. (2009). Alginate Gene Regulation. In: Rehm, B. (eds) Alginates: Biology and Applications. Microbiology Monographs, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92679-5_5

Download citation

Publish with us

Policies and ethics