Skip to main content

Soil Carbon Accumulation in Old-Growth Forests

  • Chapter
  • First Online:
Old-Growth Forests

Abstract

This chapter investigates the effect of forest age on soil carbon storage, clarifying if old-growth forests still store soil carbon despite the ecological theory that old-growth forests are carbon neutral. In the first section, a general overview of carbon storage is given, and key areas where forest age could affect carbon storage are described. In the second section, the existing literature is reviewed, elaborating the effect of these factors on carbon storage in old-growth forests. Finally a case study of a temperate broadleaf forest site is given. The results demonstrate that old-growth forests are still able to store carbon in the soil; however, litter quality, i.e. acid-generating conifer needles, may also negatively influence soil carbon storage. Most interestingly, the amount of stored carbon depends strongly on the methods applied. Chronosequence approaches generally gain only a few grams of carbon per year and square metre, whereas repeated sampling yields several tens of grams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi M, Bekku YS, Rashidah W, Okuda T, Koizumi H (2006) Differences in soil respiration between different tropical ecosystems. Appl Soil Ecol 34:258–265

    Article  Google Scholar 

  • Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet Sci 29:535–562

    Article  CAS  Google Scholar 

  • Barker WW, Banfield JF (1996) Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiontic communities. Chem Geol 132:55–69

    Article  CAS  Google Scholar 

  • Bashkin MA, Binkley D (1998) Changes in soil carbon following afforestation in Hawaii. Ecology 79:828–833

    Article  Google Scholar 

  • Black TA, Harden JW (1995) Effect of timber harvest on soil carbon storage at Blodgett-experimental-forest, California. Can J For Res–Rev Can Rech For 25:1385–1396

    Article  Google Scholar 

  • Boone RD, Sollins P, Cromack K (1988) Stand and soil changes along a mountain hemlock death and regrowth sequence. Ecology 69:714–722

    Article  Google Scholar 

  • Bouma TJ, Bryla DR (2000) On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations. Plant Soil 227:215–221

    Article  CAS  Google Scholar 

  • Brown S, Lugo AE (1990) Effects of forest clearing and succession on the carbon and nitrogen-content of soils in Puerto-Rico and US Virgin Islands. Plant Soil 124:53–64

    Article  CAS  Google Scholar 

  • Campbell JL, Law BE (2005) Forest soil respiration across three climatically distinct chronosequences in Oregon. Biogeochemistry 73:109–125

    Article  Google Scholar 

  • Chen H, Tian HQ (2005) Does a general temperature-dependent Q(10) model of soil respiration exist at biome and global scale? J Integr Plant Biol 47:1288–1302

    Article  Google Scholar 

  • Cotrufo MF, Matteucci G, De Pascale RA (2002) Carbon pools in leaf litter and woody debris of European beech forests. Proceedings of the 2nd CarboEurope Meeting, Budapest, Hungary (Poster)

    Google Scholar 

  • Covington WW (1981) Changes in forest floor organic-matter and nutrient content following clear cutting in northern hardwoods. Ecology 62:41–48

    Article  Google Scholar 

  • Davis MR, Allen RB, Clinton PW (2003) Carbon storage along a stand development sequence in a New Zealand Nothofagus forest. For Ecol Manage 177:313–321

    Article  Google Scholar 

  • De Camargo PB, Trumbore SE, Martinelli LA, Davidson EA, Nepstad DC, Victoria RL (1999) Soil carbon dynamics in regrowing forest of eastern Amazonia. Glob Change Biol 5:693–702

    Article  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  CAS  PubMed  Google Scholar 

  • Ekberg A, Buchmann N, Gleixner G (2007) Rhizospheric influence on soil respiration and decomposition in a temperate Norway spruce stand. Soil Biol Biochem 39:2103–2110

    Article  CAS  Google Scholar 

  • Ekschmitt K, Kandeler E, Poll C, Brune A, Buscot F, Friedrich M, Gleixner G, Hartmann A, Kastner M, Marhan S, Miltner A, Scheu S, Wolters V (2008) Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. J Plant Nutr Soil Sci–Z Pflanzenernahr Bodenkd 171:27–35

    Article  CAS  Google Scholar 

  • Entry JA, Emmingham WH (1998) Influence of forest age on forms of carbon in Douglas-fir soils in the Oregon Coast Range. Can J For Res–Rev Can Rech For 28:390–395

    Article  CAS  Google Scholar 

  • Fink M, Krause P, Flügel WA, Gleixner G, Schulze ED (2004) Pilotprojekt Hainich. Abschlussbericht. Kompetenzzentrum Dynamik komplexer Geosysteme (DKS). Jena, Germany

    Google Scholar 

  • Gerighausen U (2002) Dynamik der Kohlenstoffvorräte bewirtschafteter Buchenwälder auf Buntsandstein. Diploma thesis, Max-Planck-Institute for Biogeochemistry. Friedrich-Schiller-University, Jena, Germany

    Google Scholar 

  • Gleixner G, Czimczik CJ, Kramer C, Lühker B, Schmidt MWI (2001) Plant compounds and their turnover and stabilization as soil organic matter. In: Schulze ED, Heimann M, Harrison S, Holland EA, Lloyd J, Prentice IC, Schimel DS (eds) Global biogeochemical cycles in the climate system. Academic, San Diego, pp 201 –215

    Chapter  Google Scholar 

  • Gömöryová E (2004) Small-scale variation of microbial activities in a forest soil under a beech (Fagus sylvatica L.) stand. Pol J Ecol 52:311–321

    Google Scholar 

  • Gower ST, Vogel JG, Norman JM, Kucharik CJ, Steele SJ, Stow TK (1997) Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. J Geophys Res Atmos 102(D24):29029–29041

    Article  CAS  Google Scholar 

  • Guariguata MR, Chazdon RL, Denslow JS, Dupuy JM, Anderson L (1997) Structure and floristics of secondary and old-growth forest stands in lowland Costa Rica. Plant Ecol 132:107–120

    Article  Google Scholar 

  • Hanson PJ, Wullschleger SD, Bohlman SA, Todd DE (1993) Seasonal and topographic patterns of forest floor CO2 efflux from an upland oak forest. Tree Physiol 13:1–15

    PubMed  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    Article  CAS  Google Scholar 

  • Homann PS, Harmon M, Remillard S, Smithwick EAH (2005) What the soil reveals: potential total ecosystem C stores of the Pacific Northwest region, USA. For Ecol Manag 220:270–283

    Article  Google Scholar 

  • Hoover CM, Magrini KA, Evans RJ (2002) Soil carbon content and character in an old-growth forest in northwestern Pennsylvania: a case study introducing pyrolysis molecular beam mass spectrometry (py-MBMS). Environ Pollut 116:269–275

    Article  Google Scholar 

  • Houghton RA, Woodwell GM (1989) Global climatic-change. Sci Am 260:36–44

    CAS  Google Scholar 

  • Janssens IA, Kowalski AS, Longdoz B, Ceulemans R (2000) Assessing forest soil CO2 efflux: an in situ comparison of four techniques. Tree Physiol 20:23–32

    PubMed  Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Joergensen RG (1991) Organic-matter and nutrient dynamics of the litter layer on a forest rendzina under beech. Biol Fert Soils 11:163–169

    Article  Google Scholar 

  • Kelly JM, Mays PA (2005) Soil carbon changes after 26 years in a Cumberland Plateau hardwood forest. Soil Sci Soc Am J 69:691–694

    Article  CAS  Google Scholar 

  • Khomik M, Arain MA, McCaughey JH (2006) Temporal and spatial variability of soil respiration in a boreal mixedwood forest. Agric For Meteorol 140:244–256

    Article  Google Scholar 

  • Klopatek JM (2002) Belowground carbon pools and processes in different age stands of Douglas-fir. Tree Physiol 22:197–204

    CAS  PubMed  Google Scholar 

  • Knohl A, Schulze ED, Kolle O, Buchmann N (2003) Large carbon uptake by an unmanaged 250–year-old deciduous forest in Central Germany. Agric For Meteorol 118:151–167

    Article  Google Scholar 

  • Law BE, Sun OJ, Campbell J, Van Tuyl S, Thornton PE (2003) Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Glob Change Biol 9:510–524

    Article  Google Scholar 

  • Liechty HO, Jurgensen MF, Mroz GD, Gale MR (1997) Pit and mound topography and its influence on storage of carbon, nitrogen, and organic matter within an old-growth forest. Can J For Res–Rev Can Rech For 27:1992–1997

    Article  CAS  Google Scholar 

  • Liski J, Perruchoud D, Karjalainen T (2002) Increasing carbon stocks in the forest soils of western Europe. For Ecol Manag 169:159–175

    Article  Google Scholar 

  • Luyssaert S, Inglima I, Jung M, Richardson AD, Reichsteins M, Papale D, Piao SL, Schulzes ED, Wingate L, Matteucci G, Aragao L, Aubinet M, Beers C, Bernhoffer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grunwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolar P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith ML, Tang J, Valentini R, Vesala T, Janssens IA CO2 balance of boreal, temperate, and tropical forests derived from a global database (2007) Glob Change Biol 13:2509–2537

    Article  Google Scholar 

  • Martin JG, Bolstad PV (2005) Annual soil respiration in broadleaf forests of northern Wisconsin: influence of moisture and site biological, chemical, and physical characteristics. Biogeochemistry 73:149–182

    Article  Google Scholar 

  • McClaugherty CA, Pastor J, Aber JD, Melillo JM (1985) Forest litter decomposition in relation to soil-nitrogen dynamics and litter quality. Ecology 66:266–275

    Article  Google Scholar 

  • Michalzik B, Kalbitz K, Park JH, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen – a synthesis for temperate forests. Biogeochemistry 52:173–205

    Article  Google Scholar 

  • Mund M (2004) Carbon pools of European beech forests (Fagus sylvatica) under different silvicultural management. PhD Dissertation, Universität Göttingen

    Google Scholar 

  • Peichl M, Moore TR, Arain MA, Dalva M, Brodkey D, McLaren J (2007) Concentrations and fluxes of dissolved organic carbon in an age-sequence of white pine forests in Southern Ontario, Canada. Biogeochemistry 86:1–17

    Article  CAS  Google Scholar 

  • Pennock DJ, van Kessel C (1997) Clear-cut forest harvest impacts on soil quality indicators in the mixedwood forest of Saskatchewan, Canada. Geoderma 75:13–32

    Article  CAS  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol 6:317–327

    Article  Google Scholar 

  • Pregitzer KS, Euskirchen ES (2004) Carbon cycling and storage in world forests: biome patterns related to forest age. Glob Change Biol 10:2052–2077

    Article  Google Scholar 

  • Pumpanen J, Kolari P, Ilvesniemi H, Minkkinen K, Vesala T, Niinisto S, Lohila A, Larmola T, Morero M, Pihlatie M, Janssens I, Yuste JC, Grunzweig JM, Reth S, Subke JA, Savage K, Kutsch W, Ostreng G, Ziegler W, Anthoni P, Lindroth A, Hari P (2004) Comparison of different chamber techniques for measuring soil CO2 efflux. Agric For Meteorol 123:159–176

    Article  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Ser B Chem Phys Meteorol 44:81–99

    Article  Google Scholar 

  • Raich JW, Russell AE, Vitousek PM (1997) Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai'i. Ecology 78:707–721

    Google Scholar 

  • Rapalee G, Trumbore SE, Davidson EA, Harden JW, Veldhuis H (1998) Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape. Global Biogeochem Cycles 12(4):687–701

    Article  CAS  Google Scholar 

  • Rayment MB, Jarvis PG (2000) Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest. Soil Biol Biochem 32:35–45

    Article  CAS  Google Scholar 

  • Reichle DE (ed) (1970) Analysis of temperate forest ecosystems. Ecological studies, vol 1, Springer, Berlin

    Google Scholar 

  • Reichstein M, Ciais P, Papale D, Valentini R, Running S, Viovy N, Cramer W, Granier A, Ogee J, Allard V, Aubinet M, Bernhofer C, Buchmann N, Carrara A, Grunwald T, Heimann M, Heinesch B, Knohl A, Kutsch W, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Pilegaard K, Pumpanen J, Rambal S, Schaphoff S, Seufert G, Soussana JF, Sanz MJ, Vesala T, Zhao M (2007) Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Glob Change Biol 13:634–651

    Article  Google Scholar 

  • Sollins P, Spycher G, Topik C (1983) Processes of soil organic-matter accretion at a mudflow chronosequence, Mt Shasta, California. Ecology 64:1273–1282

    Article  Google Scholar 

  • Reiners WA (1968) Carbon dioxide evolution from floor of 3 Minnesota forests. Ecology 49:471–483

    Article  Google Scholar 

  • Reiners WA, Bouman AF, Parson WFJ, Keller M (1994) Tropical rain forest conversion to pasture: changes in vegetation and soil properties. Ecol Appl 4:363–377

    Article  Google Scholar 

  • Rothstein DE, Yermakov ZY, Buell AL (2004) Loss and recovery of ecosystem carbon pools following stand-replacing wildfire in Michigan jack pine forests. Can J For Res–Rev Can Rech For 34:1908–1918

    Article  Google Scholar 

  • Saiz G, Green C, Butterbach-Bahl K, Kiese R, Avitabile V, Farrell EP (2006) Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant Soil 287:161–176

    Article  CAS  Google Scholar 

  • Savage KE, Davidson EA (2001) Interannual variation of soil respiration in two New England forests. Global Biogeochem Cycles 15:337–350

    Article  CAS  Google Scholar 

  • Schenk (1999) Aufbau und Auswertung “Langer Reihen” zur Erforschung von historischen Waldzuständen und Waldentwicklungen Tübingen. Selbstverlag geographisches Institut Tübingen

    Google Scholar 

  • Schimel DS (1995) Terrestrial ecosystems and the carbon-cycle. Glob Change Biol 1:77–91

    Article  Google Scholar 

  • Schlesinger WH (1990) Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348:232–234

    Article  CAS  Google Scholar 

  • Schöning I, Kögel-Knabner I (2006) Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests. Soil Biol Biochem 38:2411–2424

    Article  CAS  Google Scholar 

  • Shibistova O, Lloyd J, Evgrafova S, Savushkina N, Zrazhevskaya G, Arneth A, Knohl A, Kolle O, Schulze ED (2002) Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest. Tellus Ser B Chem Phys Meteorol 54:552–567

    Article  Google Scholar 

  • Sierra CA, del Valle JI, Orrego SA, Moreno FH, Harmon ME, Zapata M, Colorado GJ, Herrera MA, Lara W, Restrepo DE, Berrouet LM, Loaiza LM, Benjumea JF (2007) Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. For Ecol Manage 243:299–309

    Article  Google Scholar 

  • Sinsabaugh RL, Antibus RK, Linkins AE (1991) An enzymatic approach to the analysis of microbial activity during plant litter decomposition. Agric Ecosyst Environ 34:43–54

    Article  CAS  Google Scholar 

  • Smith CK, Oliveira FD, Gholz HL, Baima A (2002) Soil carbon stocks after forest conversion to tree plantations in lowland Amazonia, Brazil. For Ecol Manag 164:257–263

    Article  Google Scholar 

  • Smith K, Gholz HL, De Assis Oliveira F (1998) Litterfall and nitrogen-use efficiency of plantations and primary forest in the eastern Brazilian Amazon. For Ecol Manage 10:209–220

    Article  Google Scholar 

  • Smithwick EAH, Harmon ME, Remillard SM, Acker SA, Franklin JF (2002) Potential upper bounds of carbon stores in forests of the Pacific Northwest. Ecol Appl 12:1303–1317

    Article  Google Scholar 

  • Soe ARB, Buchmann N (2005) Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest. Tree Physiol 25:1427–1436

    CAS  PubMed  Google Scholar 

  • Sotta ED, Veldkamp E, Guimaraes BR, Paixao RK, Ruivo MLP, Almeida SS (2006) Landscape and climatic controls on spatial and temporal variation in soil CO2 efflux in an Eastern Amazonian Rainforest, Caxiuana, Brazil. For Ecol Manag 237:57–64

    Article  Google Scholar 

  • Steinbeiss S, Temperton VM, Gleixner G (2008a) Mechanisms of short-term soil carbon storage in experimental grasslands. Soil Biol Biochem 40:2634–2642

    Article  CAS  Google Scholar 

  • Steinbeiss S, Bessler H, Engels C, Temperton VM, Buchmann N, Roscher C, Kreutziger Y, Baade J, Habekost M, Gleixner G (2008b) Plant biodiversity positively affects short-term soil carbon storage in experimental grasslands. Glob Change Biol 14:2937–2949, doi: 10.1111/j.1365-2486.2008.01697.x

    Article  Google Scholar 

  • Stemmer M, Gerzabek MH, Kandeler E (1999) Invertase and xylanase activity of bulk soil and particle-size fractions during maize straw decomposition. Soil Biol Biochem 31:9–18

    Article  CAS  Google Scholar 

  • Street JM (1982) Changes of carbon inventories in live biomass and detritus as a result of the practice of shifting agriculture and the conversion of forest to pasture: case studies in Peru, New Guinea and Hawaii. In: Ahmad I, Jahi J (eds) Geography in the Third World. Penerbit University, Kebangsaan, Malaysia, pp 249–258

    Google Scholar 

  • Sun OJ, Campbell J, Law BE, Wolf V (2004) Dynamics of carbon stocks in soils and detritus across chronosequences of different forest types in the Pacific Northwest, USA. Glob Change Biol 10:1470–1481

    Article  Google Scholar 

  • Tate KR, Parshotam A, Ross DJ (1995) Soil carbon storage and turnover in temperate forests and grasslands – a New Zealand perspective. J Biogeogr 22:695–700

    Article  Google Scholar 

  • Trumbore SE, Harden JW (1997) Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area. J Geophys Res Atmos 102(D24):28817–28830

    Article  CAS  Google Scholar 

  • Uselman SM, Qualls RG, Lilienfein J (2007) Contribution of root vs leaf litter to dissolved organic carbon leaching through soil. Soil Sci Soc Am J 71:1555–1563

    Article  CAS  Google Scholar 

  • Van Cleve K, Oliver L, Schlentner R, Viereck LA, Dyrness CT (1983) Productivity and nutrient cycling in Taiga forest ecosystems. Can J For Res–Rev Can Rech For 13:747–766

    Article  Google Scholar 

  • Vitousek PM, Turner DR, Parton WJ, Sanford RL (1994) Litter decomposition on the Mauna-Loa Environmental Matrix, Hawaii – patterns, mechanisms, and models. Ecology 75:418–429

    Article  Google Scholar 

  • Weber M (2001) Kohlenstoffspeicherung in Lenga- (Nothofagus pumilio) Primärwäldern Feuerlands und Auswirkungen ihrer Überführung in Wirtschaftswald auf den C-Haushalt. Kessel, Remagen-Oberwinter

    Google Scholar 

  • Wetzel M (2005) Modellierung der Hangwasserdynamik eines Untersuchungsgebietes im Nationalpark Hainich mit dem Modell HYDRUS-2D. Institut für Geographie. Jena, Friedrich-Schiller-Universität Diplom:80

    Google Scholar 

  • Williams M, Ryan CM, Rees RM, Sambane E, Fernando J, Grace J (2008) Carbon sequestration and biodiversity of re-growing miombo woodlands in Mozambique. For Ecol Manage 254:145–155

    Article  Google Scholar 

  • Wirth C, Czimczik CJ, Schulze E-D (2002) Beyond annual budgets: carbon flux at different temporal scales in fire-prone Siberian Scots pine forests. Tellus Ser B Chem Phys Meteorol 54:611–630

    Article  Google Scholar 

  • Witter E, Kanal A (1998) Characteristics of the soil microbial biomass in soils from a long-term field experiment with different levels of C input. Appl Soil Ecol 10:37–49

    Article  Google Scholar 

  • Yermakov Z, Rothstein DE (2006) Changes in soil carbon and nitrogen cycling along a 72-year wildfire chronosequence in Michigan jack pine forests. Oecologia 149:690–700

    Article  PubMed  Google Scholar 

  • Zimov SA, Davidov SP, Voropaev YV, Prosiannikov SF, Semiletov IP, Chapin MC, Chapin FS (1996) Siberian CO2 efflux in winter as a CO2 source and cause of seasonality in atmospheric CO2. Climatic Change 33:111–120

    Article  CAS  Google Scholar 

  • Zhou G, Liu Z, Li Z, Zhang D, Tang X, Zhou C, Yan J, Mo J (2006) Old-growth forests can accumulate carbon in soils. Science 314:1417

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the help of Martina Mund and Marion Schrumpf from MPI-BGC, Jena, for fruitful discussions and for their help with the compilation of the literature database on soil carbon sequestration rates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Gleixner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gleixner, G. et al. (2009). Soil Carbon Accumulation in Old-Growth Forests. In: Wirth, C., Gleixner, G., Heimann, M. (eds) Old-Growth Forests. Ecological Studies, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92706-8_11

Download citation

Publish with us

Policies and ethics