Skip to main content

On Multi-Objective Evolutionary Algorithms

  • Chapter
  • First Online:
Handbook of Multicriteria Analysis

Part of the book series: Applied Optimization ((APOP,volume 103))

Abstract

In this chapter Multi-Objective Evolutionary Algorithms (MOEAs) are introduced and some details discussed. A presentation of some of the concepts in which this type of algorithms are based on is given. Then, a summary of the main algorithms behind these approaches and their applications is provided, together with a brief discussion including their advantages and disadvantages, degree of applicability, and some known applications. Finally, future trends in this area and some possible paths for future research are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.A. Abbass and R. Sarker. The Pareto differential evolution algorithm. International Journal on Artificial Intelligence Tools, 11(4):531–552, 2002.

    Article  Google Scholar 

  2. S. Asghar and K. Iqbal. Automated data mining techniques:a critical literature review. In Proceedings of the International Conference on Information Management and Engineering, pages 75–76, 2009.

    Google Scholar 

  3. B.V. Babu and M.M.L. Jehan. Differential evolution for multi-objective optimization. In The 2003 Congress on Evolutionary Computation, volume 4, 2003.

    Google Scholar 

  4. D. Beasley. Possible applications of evolutionary computation. In T. Bäck, D.B. Fogel, and Z. Michalewicz, editors, Handbook of Evolutionary Computation, pages 4–19. IOP Publishing Ltd. and Oxford University Press, 1997.

    Google Scholar 

  5. S.I. Birbil and S.C. Fang. An electromagnetism-like mechanism for global optimization. Journal of Global Optimization, 25:263–282, 2003.

    Article  Google Scholar 

  6. J. Branke, B. Scheckenbach, M. Stein, K. Deb, and H. Schmeck. Portfolio optimization with an envelope-based multi-objective evolutionary algorithm. European Journal of Operational Research, 199(3):684–693, 2009.

    Article  Google Scholar 

  7. S.H. Chen. Evolutionary Computation in Economics and Finance. Physica-Verlag, 2002.

    Google Scholar 

  8. C.A.C. Coello and G.B. Lamont. Applications of Multi-Objective Evolutionary Algorithms. World Scientific, 2004.

    Google Scholar 

  9. C.A.C. Coello and M.S. Lechuga. MOPSO: a proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation, 2002, volume 2, pages 1051–1056, 2002.

    Google Scholar 

  10. C.A.C. Coello, G.T. Pulido, and M.S. Lechuga. Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3):256–279, 2004.

    Article  Google Scholar 

  11. C.A.C. Coello, D.A. Van Veldhuizen, and G.B. Lamont. Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer, Dordrecht, 2002.

    Google Scholar 

  12. D.W. Corne, J.D. Knowles, and M.J. Oates. The Pareto-Envelope based Selection Algorithm for Multiobjective Optimisation. In Proceedings of the Parallel Problem Solving from Nature VI (PPSNVI), 2000.

    Google Scholar 

  13. L. Costa and P. Oliveira. Dimension reduction in multiobjective optimization. PAMM, 7(1):2060047–2060048, 2007.

    Article  Google Scholar 

  14. K. Deb. Multi-objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester, 2001.

    Google Scholar 

  15. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimisation: NSGAII. In Proceedings of the Parallel Problem Solving from Nature VI (PPSNVI), pages 849–858, 2000.

    Google Scholar 

  16. K. Deb and D.E. Goldberg. An investigation of niche and species formation in genetic function optimization. In Proc. Third Int. Conf. on Genetic Algorithms, 1989.

    Google Scholar 

  17. K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan. A fast and elitist multi-objective genetic algorithm: NSGAII. IEEE Transactions on Evolutionary Computation, 6:182–197, 2002.

    Article  Google Scholar 

  18. D. Debels and M. Vanhoucke. The electromagnetism meta-heuristic applied to the resourceconstrained project scheduling problem. Lecture Notes in Computer Science, 3871:259–270, 2006.

    Article  Google Scholar 

  19. C. Dimopoulos. A review of evolutionary multiobjective optimization applications in the area of production research. In Congress on Evolutionary Computation (CEC 04), pages 1487– 1494, 2004.

    Google Scholar 

  20. C. Dimopoulos. Explicit consideration of multiple objectives in cellular manufacturing. Engineering Optimization, 39(5):551–565, 2007.

    Article  Google Scholar 

  21. C. Dimopoulos and N. Mort. Evolving knowledge for the solution of clustering problems in cellular manufacturing. International Journal of Production Research, 42(19):4119–4133, 2004.

    Article  Google Scholar 

  22. K.F. Doerner, W.J. Gutjahr, R.F. Hartl, C. Strauss, and C. Stummer. Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research, 131(1):79–99, 2004.

    Article  Google Scholar 

  23. K.F. Doerner, W.J. Gutjahr, R.F. Hartl, C. Strauss, and C. Stummer. Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection. European Journal of Operational Research, 171(3):830–841, 2006.

    Article  Google Scholar 

  24. E.I. Ducheyne, B. De Baets, and R.R. De Wulf. Applications of Multi-Objective Evolutionary Algorithms, volume 1 of Advances in Natural Computation, chapter Even Flow Scheduling Problems in Forest Management, pages 701–726. World Scientific Pub Co Inc, 2004.

    Google Scholar 

  25. E.I. Ducheyne, R.R. De Wulf, and B. De Baets. A spatial approach to forest-management optimization: linking GIS and multiple objective genetic algorithms. International Journal of Geographical Information Science, 20(8):917–928, 2006.

    Article  Google Scholar 

  26. F.Y. Edgeworth. Mathematical Physics. P. Keagan, London, England, 1881.

    Google Scholar 

  27. J.C. Ferreira, C.M. Fonseca, J.A. Covas, and A. Gaspar-Cunha. Advances in Evolutionary Algorithms, chapter Evolutionary Multi-Objective Robust Optimization, pages 261–278. ITech Education and Publishing, 2008.

    Google Scholar 

  28. J.C. Ferreira, C.M. Fonseca, and A. Gaspar-Cunha. Methodology to select solutions from the Pareto-optimal set: A comparative study. In GECCO 2007, Genetic and Evolutionary Computation Conference, 2007.

    Google Scholar 

  29. J.C. Ferreira, C.M. Fonseca, and A Gaspar-Cunha. Selection of solutions in a multi-objective environment: Polymer extrusion a case study. In Evolutionary Methods For Design, Optimization and Control, 2008.

    Google Scholar 

  30. L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial Intelligence Through Simulated Evolution. Wiley, New York, 1996.

    Google Scholar 

  31. C.M. Fonseca and P.J. Fleming. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In S. Forrest, editor, Multiple Criteria Problem Solving, pages 416–423. Morgan Kauffman Publishers, San Mateo, California, 1993.

    Google Scholar 

  32. L. Galway, D. Charles, and M. Black. Machine learning in digital games: A survey. Artificial Intelligence Review, 29(2):123–161, 2009.

    Article  Google Scholar 

  33. C. Garcia-Martinez, O. Cordon, and F. Herrera. A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. European Journal of Operational Research, 180(1):116–148, 2007.

    Article  Google Scholar 

  34. A. Gaspar-Cunha. Modeling and Optimisation of Single Screw Extrusion. PhD thesis, University of Minho, Guimares, Portugal, 2000.

    Google Scholar 

  35. A. Gaspar-Cunha and J.A. Covas. Robustness in multi-objective optimization using evolutionary algorithms. Computational Optimization and Applications, 39(1):75–96, 2008.

    Article  Google Scholar 

  36. A. Gaspar-Cunha and Covas J.A. Metaheuristics for Multiobjective Optimisation, chapter RPSGAe - A Multiobjective Genetic Algorithm with Elitism: Application to Polymer Extrusion, pages 221–249. Lecture Notes in Economics and Mathematical Systems. Springer, 2004.

    Google Scholar 

  37. A. Gaspar-Cunha and A.S. Vieira. A hybrid multi-objective evolutionary algorithm using an inverse neural network. In Hybrid Metaheuristics (HM 2004) Workshop at ECAI 2004, 2004.

    Google Scholar 

  38. D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison- Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.

    Google Scholar 

  39. W.Y. Gong, Z.H. Cai, and L. Zhu. An efficient multiobjective differential evolution algorithm for engineering design. Structural And Multidisciplinary Optimization, 38(2):137–157, 2009.

    Article  Google Scholar 

  40. J. Handl, D.B. Kell, and J. Knowles. Multiobjective optimization in bioinformatics and computational biology. IEEE/ACM Transactions On Computational Biology And Bioinformatics, 4(2):279–292, 2007.

    Article  Google Scholar 

  41. J.G. Herrero, A. Berlanga, and J.M.M. Lopez. Effective evolutionary algorithms for manyspecifications attainment: Application to air traffic control tracking filters. IEEE Transactions on Evolutionary Computation, 13(1):151–168, 2009.

    Article  Google Scholar 

  42. J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.

    Google Scholar 

  43. H. Hoogeveen. Multicriteria scheduling. European Journal of Operational Research, 167:592–623, 2005.

    Article  Google Scholar 

  44. J. Horn, N. Nafpliotis, and D.E. Goldberg. A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation, 1994.

    Google Scholar 

  45. E.R. Hruschka, R.J.G.B. Campello, A.A. Freitas, and A.C.P.L.F. de Carvalho. A survey of evolutionary algorithms for clustering. IEEE Transactions On Systems, Man, and Cybernetics Part C, 39(2):133–155, 2009.

    Google Scholar 

  46. M.T. Jensen. Reducing the run-time complexity of multi-objective EAs: The NSGA-II and other algorithms. IEEE Transactions on Evolutionary Computation, 7(5):503–515, 2003.

    Article  Google Scholar 

  47. Y. Jin, editor. Multi-Objective Machine Learning. Springer-Verlag, New York, 2006.

    Google Scholar 

  48. Y. Jin and B. Sendhoff. Pareto-based multiobjective machine learning: An overview and case studies. IEEE Transactions On Systems, Man, and Cybernetics Part C, 38(3):397–415, 2008.

    Article  Google Scholar 

  49. R.L. Keeney and H. Raiffa. Decision with Multiple Objectives. Preferences and Value Tradeoffs. Cambridge University Press, Cambridge, UK, 1993.

    Google Scholar 

  50. Y.K. Kim, Y.-J. Kim, and Y. Kim. Genetic algorithms for assembly line balancing with various objectives. Computers and Industrial Engineering, 30(3):397–409, 1996.

    Article  Google Scholar 

  51. J.D. Knowles and D.W. Corne. Approximating the non-dominated front using the Pareto archived evolutionary strategy. Evolutionary Computation Journal, 8(2):149–172, 2000.

    Article  Google Scholar 

  52. J. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, 1992.

    Google Scholar 

  53. R. Kumar. Applications of Multi-Objective Evolutionary Algorithms, chapter On machine learning with multiobjective genetic optimization, pages 393–425. World Scientific, 2004.

    Google Scholar 

  54. D. Lei. Multi-objective production scheduling: A survey. International Journal on Advanced Manufacturing and Technology, 43:926–938, 2009.

    Article  Google Scholar 

  55. J. Li. Enhancing financial decision making using multi-objective financial genetic programming. In In IEEE Congress on Evolutionary Computation, 2006.

    Google Scholar 

  56. S.A. Mansouri, S.M.M. Husseini, and Newman. S.T. A review of the modern approaches to multi-criteria cell design. International Journal of Production Research, 38(5):1201–1218, 2000.

    Google Scholar 

  57. F. Mendes, V. Sousa, M.F.P. Costa, and A. Gaspar-Cunha. Multi-objective memetic algorithm using pattern search filter methods. In EU/Meeting 2009, 2009.

    Google Scholar 

  58. T. Murata, H. Ishibuchi, and H. Tanaka. Multi-objective genetic algorithms and its application to flow-shop scheduling. Computers and Industrial Engineering, 30(4):957–968, 1996.

    Article  Google Scholar 

  59. A. Nagar, J. Haddock, and S. Heragu. Multiple and bicriteria scheduling: A literature survey. European Journal of Operational Research, 81:88–104, 1995.

    Article  Google Scholar 

  60. A.C. Nearchou. Multi-objective balancing of assembly lines by population heuristics. International Journal of Production Research, 46(8):2275–2279, 2008.

    Article  Google Scholar 

  61. V. Pareto. Cours dEconomie Politique. vol. I and II, F. Rouge, Lausanne, 1896.

    Google Scholar 

  62. C.A. Pe˜na Reyes and M. Sipper. Evolutionary computation in medicine: An overview. Artificial Intelligence in Medicine, 19:1–23, 2000.

    Google Scholar 

  63. L. Rachmawati and D. Srinivasan. Preference incorporation in multi-objective evolutionary algorithms: A survey. In IEEE Congress on Evolutionary Computation, 2006, pages 962–968, 2006.

    Google Scholar 

  64. I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme Nach Prinzipien der Biologischen Evolution. Frommann-Hoolzboog Verlag, 1973.

    Google Scholar 

  65. M. Reyes-Sierra and C.A.C. Coello. Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International Journal of Computational Intelligence Research, 2(3):287–308, 2006.

    Google Scholar 

  66. T.L. Saaty. Multicriteria Decision Making: The Analytic Hierarchy Process - Planning, Priority Setting, Resource Allocation. RWS Publications, Pittsburgh, PA, 1990.

    Google Scholar 

  67. J.D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. PhD thesis, Vanderbilt University, Nashville, Tennessee, 1984.

    Google Scholar 

  68. J.D. Schaffer. Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the 1st International Conference on Genetic Algorithms and Their Applications, pages 93–100. L. Erlbaum Associates Inc. Hillsdale, NJ, USA, 1985.

    Google Scholar 

  69. F. Schlottmann and D. Seese. Applications of Multi-Objective Evolutionary Algorithms, volume 1 of Advances in Natural Computation, chapter Financial Applications of Multi-Objective Evolutionary Algorithms: Recent Developments and Future Research Directions, pages 627–652. World Scientific Pub Co Inc, 2004.

    Google Scholar 

  70. F. Schlottmann and D. Seese. Handbook of Computational and Numerical Methods in Finance, chapter Modern Heuristics for Finance Problems:A Survey of Selected Methods and Applications, pages 331–360. Birkh¨auser, 2004.

    Google Scholar 

  71. A. Scholl, editor. Balancing and Sequencing of Assembly Lines. Physica-Verlag, 1999.

    Google Scholar 

  72. A. Scholl and C. Becker. State of the art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research, 168:666–693, 2006.

    Article  Google Scholar 

  73. L.J.D. Silva and E.K. Burke. Applications of Multi-Objective Evolutionary Algorithms, volume 1 of Advances in Natural Computation, chapter Using Diversity to Guide the Search in Multi-objective Optimization, pages 727–747. World Scientific Pub Co Inc, 2004.

    Google Scholar 

  74. N. Srinivas and K. Deb. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 2:221–248, 1995.

    Article  Google Scholar 

  75. M.G.C. Tapia and C.A.C. Coello. Applications of multi-objective evolutionary algorithms in economics and finance: A survey. In IEEE Congress on Evolutionary Computation, CEC, pages 532–539, 2007.

    Google Scholar 

  76. V. TKindt, J. Billaut, and C. Proust. Multicriteria scheduling problems: A survey. RAIRO Operations Research, 35:143–163, 2001.

    Article  Google Scholar 

  77. D.A. Van Veldhuizen and G.B. Lamont. Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. Evolutionary computation, 8(2):125–148, 2000.

    Article  Google Scholar 

  78. P. Vincke. Analysis of MCDA in Europe. European Journal of Operational Research, 25:160–168, 1995.

    Article  Google Scholar 

  79. U. Wemmerlov and D.J. Johnson. Empirical findings in manufacturing cell design. International Journal of Production Research, 38:481–507, 2000.

    Article  Google Scholar 

  80. F. Xue, A.C. Sanderson, and R.J. Graves. Pareto-based multi-objective differential evolution. In Evolutionary Computation, 2003. CEC’03. The 2003 Congress on, volume 2, 2003.

    Google Scholar 

  81. E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2):173–195, 2000.

    Article  Google Scholar 

  82. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength Pareto evolutionary algorithm. TIK report no. 103, Swiss Federal Institute of Technology, Zurich, Switzerland, 2001.

    Google Scholar 

  83. E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4):257–271, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalila B. M. M. Fontes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fontes, D.B.M.M., Gaspar-Cunha, A. (2010). On Multi-Objective Evolutionary Algorithms. In: Zopounidis, C., Pardalos, P. (eds) Handbook of Multicriteria Analysis. Applied Optimization, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92828-7_10

Download citation

Publish with us

Policies and ethics