Skip to main content

Dynamic Surface Reconstruction Method from Unorganized Point Cloud

  • Chapter
Computer Recognition Systems 3

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 57))

  • 1049 Accesses

Summary

The aim of this paper is to introduce a 3D Profile Neighbourhood as an improvement factor in the dynamic surface reconstruction process. The application of this profile in the fitting process causes that the surface better reflects the shape enclosed in the unorganized point cloud. It is achieved due to the utilization of the probability distribution of the point cloud values in the area of each vertex in the evolving irregular polygonal mesh representing the surface. The improvements of the dynamic surface reconstruction method are described and the results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen, L.D.: On Active Contour Models and Balloons. Computer Vision, Graphics and Image Processing: Image Understanding 53, 211–218 (1991)

    MATH  Google Scholar 

  2. Cohen, L.D., Cohen, I.: Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images. IEEE Transactions on Patern and Machine Intelligence 15, 1131–1147 (1993)

    Article  Google Scholar 

  3. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active Shape Models - Their Training and Application. Computer Vision and Image Understanding, 38–59 (1995)

    Google Scholar 

  4. Cootes, T.F., Taylor, C.J.: Data Driven Refinement of Active Shape Model Search. In: Proc. 7th British Machine Vision Conference (1996)

    Google Scholar 

  5. Cootes, T.F., Edwards, G., Taylor, C.J.: Comparing Active Shape Models with Active Appearance Models, pp. 173–182. BMVA Press (1999)

    Google Scholar 

  6. Delaunay, B.: Sur la sphere vide, Otdelenie Matematicheskikh i Estestvennykh Nauk, vol. 7 (1934)

    Google Scholar 

  7. Duan, Y., Qin, H.: 2.5D Active Contour for Surface Reconstruction. In: Proc. of 8th International Workshop on Vision. Modeling and Visualization, pp. 431–439 (2003)

    Google Scholar 

  8. Ganapathy, S., Dennehy, T.G.: A New General Triangulation Method for Planar Contours. In: Proc. of SIGGRAPH, pp. 69–75 (1978)

    Google Scholar 

  9. Holtzman-Gazit, M., Kimmel, R., Peled, N., Goldsher, D.: Segmentation of Thin Structures in Volumetric Mediacal Images. IEEE Transactions on Image Processing, 354–363 (2006)

    Google Scholar 

  10. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal of Computer Vision 1 (1987)

    Google Scholar 

  11. Kim, D.K., Hwang, C.J.: Boundary Segmentation and Model Fitting Using Affine Active Surface Model. TENCON - Digital Signal Processing Applications, 26–29 (1996)

    Google Scholar 

  12. Li, B., Millington, S.A., Anderson, D.D., Acton, S.T.: Registration of Surfaces to 3D Images Using Rigid Body Surfaces. In: Fortieth Asilomar Conference on Signals, Systems and Computers, pp. 416–420 (2006)

    Google Scholar 

  13. Lorensen, W.E., Cline, H.E.: Marching Cubes: A high resolution 3D surface construction algorithm, Computer Graphics. In: SIGGRAPH, pp. 163–169 (1987)

    Google Scholar 

  14. Karolina, N.: Substitute Contours Method for Object Reconstruction from Parallel Contours. In: Proc. of 38th Annual Conference on Teaching and Learning through Gaming and Simulation, Nottingham, England, pp. 183–189 (2008)

    Google Scholar 

  15. Karolina, N.: 3D Object Reconstruction from Parallel Cross-Sections. In: Proc. of International Conference on Computer Visualization and Graphics. Lectures Notes of Computer Science. Springer, Heidelberg (2008) (in press)

    Google Scholar 

  16. Karolina, N.: Metoda tworzenia deformowalnych wielorozdzielczych powierzchni i ich interaktywna wizualizacja. PhD Thesis, The Silesian University of Technology, Gliwice, Poland (2008)

    Google Scholar 

  17. Karolina, N.: Constrained Dynamical Surface Reconstruction fron Unorganized Point Cloud. In: EUROCON 2009 (2009) (in review)

    Google Scholar 

  18. Karolina, N.: Surface Reconstruction from Unorganized Point Cloud Methodology. In: Mirage 2009 (2009) (in review)

    Google Scholar 

  19. Parker, J.R., Attia, E.N.: Object Reconstruction from Slices for Vision. In: Proc. of International Computer Graphics, pp. 58–64 (1999)

    Google Scholar 

  20. Slabaugh, G., Unal, G.: Active Polyhedron: Surface Evolution Theory Applied to Deformable Models. In: Computer Vision and Pattern Recognition, pp. 84–91 (2005)

    Google Scholar 

  21. Smith, L.I.: A tutorial on Principal Component Analysis (2002)

    Google Scholar 

  22. Stegmann, M.B., Gomez, D.: A Brief Introduction to Statistical Shape Analysis. Informatics and Mathematical Modelling, Technical University of Denmark, 15 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

NurzyƄska, K. (2009). Dynamic Surface Reconstruction Method from Unorganized Point Cloud. In: Kurzynski, M., Wozniak, M. (eds) Computer Recognition Systems 3. Advances in Intelligent and Soft Computing, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93905-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-93905-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-93904-7

  • Online ISBN: 978-3-540-93905-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics