Skip to main content

Midbrain Structures and Control of Ventilation in Amphibians

  • Chapter
  • First Online:
Cardio-Respiratory Control in Vertebrates

Abstract

Despite recent advances, the mechanisms of neurorespiratory control in anuran amphibians are far from understood. Among key brainstem structures believed to play a major role in the ventilatory control of amphibians is the nucleus isthmi (NI) and Locus coeruleus (LC). It has been suggested that the NI acts to inhibit hypoxic and hypercarbic drives to breathing. The putative mediators for these responses are glutamate and nitric oxide. As to the LC, it has now been reported that this nucleus is a CO2-sensitive receptor site in amphibians, which mediates the ventilatory response to hypercapnia. This chapter reviews the available data on the role of the NI and LC in the control of ventilation in amphibians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida MC, Steiner AA, Coimbra NC, Branco LGS (2004) Thermoeffector neuronal pathways in fever: role of the locus coeruleus. Journal of Physiology 558:283–294

    PubMed  CAS  Google Scholar 

  • Andrzejewski M, Mückenhoff K, Scheid P, Ballantyne D (2001) Synchronized rhythms in chemosensitive neurons of the locus coeruleus in the absence of chemical synaptic transmission. Respiration Physiology 129(1–2):123–140

    PubMed  CAS  Google Scholar 

  • Ang RC, Hoob B, Kazemi H (1992) Role of glutamate as the central neurotransmitter in the hypoxic ventilatory response. Journal of Applied Physiology 72:1480–1487

    PubMed  CAS  Google Scholar 

  • Anselmo-Franci JÁ, Peres-Polon VL, da Rocha-Barros VM, Moreira ER, Franci CR, Rocha MJ (1998) C-fos expression and electrolytic lesions studies reveal activation of the posterior region of locus coeruleus during hemorrhage induced hypotension. Brain Research 799(2):278–284

    PubMed  CAS  Google Scholar 

  • Aston-Jones MT, Shipley MT, Grzanna R (1995) The locus coeruleus, A5 and A7 noradrenergic cell groups. In: G. Paxinos (ed) The Rat Nervous System. Academic, San Diego, pp 183–213

    Google Scholar 

  • Barros RCH, Branco LGS (1998) Effect of nitric oxide synthase inhibition on hypercapnia-induced hypothermia and hyperventilation. Journal of Applied Physiology 85:967–972

    PubMed  CAS  Google Scholar 

  • Berquin P, Bodineau L, Gros F, Larnicol N (2000) Brainstem and hypothalamic areas involved in respiratory chemoreflexes: a Fos study in adult rats. Brain Research 857(1–2):30–40

    PubMed  CAS  Google Scholar 

  • Berridge CW, Waterhouse BD (2003) The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Research Review 42(1):33–84

    Google Scholar 

  • Bhaskaran D, Freed CR (1988) Changes in neurotransmitter turnover in locus coeruleus produced by changes in arterial blood pressure. Brain Research Bulletin 21(2):191–199

    PubMed  CAS  Google Scholar 

  • Biancardi V, Bicego KC, Almeida MC, Gargaglioni LH (2008) Locus coeruleus noradrenergic neurons and CO2 drive to breathing. Pflügers Archiv 455:1119–1128

    PubMed  CAS  Google Scholar 

  • Birch PJ, Grossman CJ, Hayes AG (1988) Kynurenate and FG9041 have both competitive and non-competitive antagonist actions at excitatory amino acid receptors. European Journal of Pharmacology 151:313–315

    PubMed  CAS  Google Scholar 

  • Branco LGS, Glass ML, Hoffmann A (1992) Central chemoreceptor drive to breathing in unanesthetized toads, Bufo paracmenis. Respiration Physiology 87:195–204

    PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proceeding of the National Academy of Sciences of the United States of America 86:9030–9033

    CAS  Google Scholar 

  • Bredt DS, Hwang PM, Glatt CE, Löwenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351:714–718

    PubMed  CAS  Google Scholar 

  • Burggren WW, Infantino RL (1994) The respiratory transition from water to air breathing during amphibian metamorphosis. American Zoology 34:238–246

    Google Scholar 

  • Coates EL, Ballam GO (1990) Olfactory receptor response to CO2 in bullfrogs. American Journal of Physiology 258:R1207–R1212

    PubMed  CAS  Google Scholar 

  • Coates EL, Li A, Nattie EE (1993) Widespread sites of brain stem ventilatory chemoreceptors. Journal of Applied Physiology 75:5–14

    PubMed  CAS  Google Scholar 

  • Dalström A, Fuxe L (1964) Evidence for the existence of monoamine-containing neurons in the central neurons system. I. Demonstration of monoamines in the cell bodies of brain system neurons. Acta Physiologica Scandinavica Supplementum 232:1–55

    Google Scholar 

  • Dawid-Milner M, Lara J, Gonzales-Baron S, Spyer K (2001) Respiratory effects of stimulation of cell bodies of the A5 region in anesthetized rats. Pflügers Archiv 441:434–443

    PubMed  CAS  Google Scholar 

  • Dillon DH, Welsh DE, Waldrop TG (1991) Modulation of respiratory reflexes by an excitatory amino acid mechanism in the ventrolateral medulla. Respiration Physiology 85:55–72

    PubMed  CAS  Google Scholar 

  • Elam M, Yao T, Thoren P, Svensson TH (1981) Hypercapnia and hypoxia: chemoreceptor-mediated control of locus coeruleus neurons and splanchnic, sympathetic nerves. Brain Research 222:373–381

    PubMed  CAS  Google Scholar 

  • Erickson JT, Millhorn DE (1984) Hypoxia and electrical stimulation of the carotid sinus nerve induce Fos-like immunoreactivity within catecholaminergic and serotonergic neurons of the rat brainstem. Journal of Comparative Neurology 348:161–182

    Google Scholar 

  • Fabris G, Steiner AA, Anselmo-Franci JA, Branco LG (1999) Role of nitric oxide in hypoxia-induced hyperventilation and hypothermia: participation of the locus coeruleus. Brazilian Journal of Medical and Biological Research 32:1389–1398

    PubMed  CAS  Google Scholar 

  • Fabris G, Steiner AA, Anselmo-Franci JA, Branco LG (2000) Role of nitric oxide in rat locus coeruleus in hypoxia-induced hyperventilation and hypothermia. Neuroreport 11:2991–2995

    PubMed  CAS  Google Scholar 

  • Ferreira CM, De Paula PM, Branco LG (2004) Role of glutamate locus coeruleus of rats in the hypoxia-induced hyperventilation and anapyrexia. Respiratory Physiology and Neurobiology 139(2):157–166

    PubMed  CAS  Google Scholar 

  • Filosa JA, Dean JB, Putnam RW (2002) Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones. Journal of Physiology 541:493–509

    PubMed  CAS  Google Scholar 

  • Gargaglioni LH, Branco LGS (2000) Role of nucleus isthmi in the ventilatory response to hypoxia of Bufo paracnemis. Respiration Physiology 119:31–39

    PubMed  CAS  Google Scholar 

  • Gargaglioni LH, Branco LGS (2001) Effect of nitric oxide in the nucleus isthmi on the hypoxic and hypercarbic drive to breathing of toads. American Journal of Physiology 281:338–345

    Google Scholar 

  • Gargaglioni LH, Branco LGS (2003) Role of glutamate in the nucleus isthmi on the hypoxia- and hypercarbia-induced hyperventilation of toads. Respiratory Physiology and Neurobiology 135:47–58

    PubMed  CAS  Google Scholar 

  • Gargaglioni LH, Branco LGS (2004) Nucleus isthmi and control of breathing in amphibians. Respiratory Physiology and Neurobiology 143(2–3):177–186

    PubMed  Google Scholar 

  • Gargaglioni LH, Milsom WK (2007) Control of breathing in anuran amphibians. Comparative Biochemistry and Physiology A: Molecular and Integrative Physiology 147(3):665–684

    PubMed  Google Scholar 

  • Gargaglioni LH, Coimbra NC, Branco LGS (2002) Chemical lesions of the nucleus isthmi increase the hypoxic and hypercarbic drive to breathing of toads. Respiratory Physiology and Neurobiology 132:289–299

    PubMed  Google Scholar 

  • Gargaglioni LH, Coimbra NC, Branco LGS (2003) The nucleus raphe magnus modulates hypoxia-induced hyperventilation but not anapyrexia in rats. Neuroscience Letters 347:121–125

    PubMed  CAS  Google Scholar 

  • Gargaglioni LH, Meier JT, Branco LG, Milsom WK (2007) Role of midbrain in the control of breathing in anuran amphibians. American Journal of Physiology 293(1):447–557

    Google Scholar 

  • Gonzalez A, Smeets WJ (1993) Noradrenaline in the brain of the South African clawed frog Xenopus laevis: a study with antibodies against noradrenaline and dopamine-beta-hydroxylase. Journal of Comparative Neurology 331:363–374

    PubMed  CAS  Google Scholar 

  • Gonzalez A, Marin O, Tuinhof R, Smeets WJ (1994) Ontogeny of catecholamine systems in the central nervous system of anuran amphibians: an immunohistochemical study with antibodies against tyrosine hydroxylase and dopamine. Journal of Comparative Neurology 346:63–79

    PubMed  CAS  Google Scholar 

  • Garthwaite J (1991) Glutamate, nitric oxide and cell-signaling in the nervous system. Trends in Neuroscience 14:60–67

    CAS  Google Scholar 

  • Garthwaite J, Boulton CL (1995) Nitric oxide signaling in the central nervous system. Annual Review of Physiology 57:682–706

    Google Scholar 

  • Garthwaite J, Garthwaite G, Palmer RM, Moncada S (1989) NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. European Journal of Pharmacology 172:413–416

    PubMed  CAS  Google Scholar 

  • Gozal D, Torres JE, Gozal YM, Littwin SM (1996) Effect of nitric oxide synthase inhibition on cardiorespiratory responses in the conscious rat. Journal of Applied Physiology 81:2068–2077

    PubMed  CAS  Google Scholar 

  • Guldin WO, Markowitsch HJ (1982) No detectable remote lesions following massive intrastriatal injections of ibotenic acid. Brain Research 225:446–451

    Google Scholar 

  • Guyenet PG, Koshiya N, Huangfu D, Verberne AJ, Riley TA (1993) Central respiratory control of A5 and A6 pontine noradrenergic neurons. American Journal of Physiology 264:1035–1044

    Google Scholar 

  • Guyenet PG, Stornetta RL, Bayliss DA, Mulkey DK (2005) Retrotrapezoid nucleus: a litmus test for the identification of central chemoreceptors. Experimental Physiology 90:247–253

    PubMed  CAS  Google Scholar 

  • Harris MB,Milsom WK (2001) The influence of NMDA receptor-mediated processes on breathing pattern in ground squirrels. Respiration Physiology 125:181–197

    PubMed  CAS  Google Scholar 

  • Haxhiu MA, Chang CH, Dreshaj IA, Erokwu B, Prabhakar NR, Cherniack NS (1995) Nitric oxide and ventilatory response to hypoxia. Respiration Physiology 101:257–266

    PubMed  CAS  Google Scholar 

  • Hedrick MS, Morales RD, Parker JM, Pacheco JLH (1998) Nitric oxide modulates respiratory-related neural activity in the isolated brainstem of the bullfrog. Neuroscience Letters 251:81–84

    PubMed  CAS  Google Scholar 

  • Hilaire G, Viemari JC, Coulon P, Simonneau M, Bévengut M (2004) Modulation of the respiratory rhythm generation by the pontine A5 and A6 groups in rodents. Respiratory Physiology and Neurobiology 143:187–197

    PubMed  CAS  Google Scholar 

  • Hitzig BM, Allen JC, Jackson DC (1985) Central chemical control of ventilation and response of turtles to inspired CO2. American Journal of Physiology 249:323–328

    Google Scholar 

  • Hoffmann A (1973) Stereotaxic atlas of the toad’s brain. Acta Anatomica 84:416–451

    PubMed  CAS  Google Scholar 

  • Hoffmann A, de Souza MB (1982) Cardiovascular reflexes in conscious toads. Journal of the Autonome Nerve System 5:345–355

    CAS  Google Scholar 

  • Jaffrey SR, Snyder SH (1995) Nitric oxide: a neural messenger. Annual Review of Cell and Developmental Biology 11:417–440

    PubMed  CAS  Google Scholar 

  • Jarrard LE (1989) On the use of ibotenic acid to lesion selectively different components of the hippocampal formation. Journal of Neuroscience Methods 29:251–259

    PubMed  CAS  Google Scholar 

  • Kiernan JA (1990) Histological and Histochemical Methods: Theory and Practice. 2nd edn. Pergamon, New York

    Google Scholar 

  • Kinkead R (1997) Episodic breathing in frogs: converging hypothesis on neural control of respiration in air breathing vertebrates. American Zoology 37:31–40

    Google Scholar 

  • Kinkead R, Harris MB, Milsom WK (1997) The role of the nucleus isthmi in respiratory pattern formation in bullfrogs. Journal of Experimental Biology 200:1781–1793

    PubMed  CAS  Google Scholar 

  • Larsell O (1924) The nucleus isthmi of the frog. Journal of Comparative Neurololgy 36:309–322

    Google Scholar 

  • Li A, Nattie EE (2006) Catecholamine neurons in rats modulate sleep, breathing, central chemoreception, and breathing variability. Journal of Physiology 570:385–396

    PubMed  CAS  Google Scholar 

  • Maglòczky Z, Freund TF (1995) Delayed cell death in the contralateral hippocampus following kainite injection into the CA3 subfield. Neuroscience 66:847–860

    PubMed  Google Scholar 

  • Marin O, Smeets WJ, Gonzalez A (1996) Do amphibians have a true locus coeruleus? Neuroreport 7:1447–1451

    PubMed  CAS  Google Scholar 

  • McLean HA, Perry SF, Remmers JE (1995) Two regions in the isolated brainstem of the frog that modulate respiratory-related activity. Journal of Comparative Physiology 177:135–144

    PubMed  CAS  Google Scholar 

  • Milsom WK (1991) Intermittent breathing in vertebrates. Annual Review of Physiology 53:87–105

    PubMed  CAS  Google Scholar 

  • Milsom WK, Jones DR (1977) Carbon dioxide sensitivity of pulmonary receptors in the frog. Experientia 33:1167–1168

    PubMed  CAS  Google Scholar 

  • Miyawaki T, Kawamura H, Hara K, Suzuki K, Usui W, Yasugi T (1993) Differential regional hemo-dynamic changes produced by L-glutamate stimulation of the locus coeruleus. Brain Research 600(1):56–62

    PubMed  CAS  Google Scholar 

  • Montague PR, Gancayco CD, Winn MY, Marchase RB, Friendlander MJ (1994) Role of NO production in NMDA receptor-mediated neurotransmitter release in cerebral cortex. Science 263:973–977

    PubMed  CAS  Google Scholar 

  • Muñoz M, Muñoz A, Marin O, Alonso JR, Arevalo R, Porteros A, Gonzalez A (1996) Topographical distribution of NADPH-diaphorase activity in the central nervous system of the frog, Rana perezi. Journal of Comparative Neurology 25 (367):54–69

    Google Scholar 

  • Murad F (1999) Cellular signaling with nitric oxide and cyclic GMP. Brazilian Journal of Medical and Biological Research 32:17–27

    Google Scholar 

  • Murase S, Takayama M, Nosaka S (1993) Chemical stimulation of the nucleus locus coeruleus: cardiovascular responses and baroreflex modification. Neuroscience Letters 153:1–4

    PubMed  CAS  Google Scholar 

  • Nattie EE (2001) Central chemosensitivity, sleep, and wakefulness. Respiration Physiology 129:257–268

    PubMed  CAS  Google Scholar 

  • Noronha-de-Souza CR, Bicego KC, Michel G, Glass ML, Branco LG, Gargaglioni LH (2006) Locus coeruleus is a central chemoreceptive site in toads. American Journal of Physiology 291(4):997–1006

    Google Scholar 

  • Nucci TB, Branco LGS, Gargaglioni LG (2004) Nitric oxide pathway in the nucleus raphe magnus modulates hypoxic ventilatory response but not anapyrexia in rats. Brain Research 1017:39–45

    PubMed  CAS  Google Scholar 

  • Ohtake PJ, Torres JE, Gozal YM, Graff GR, Gozal D (1998) NMDA receptors mediate peripheral chemoreceptor afferent input in the conscious rat. Journal of Applied Physiology 84:853–861

    PubMed  CAS  Google Scholar 

  • Oka K (1958a) The influence of the transection of the brain upon the respiratory movement of the frog. Journal of the Physiological Society of Japan 20:513–519

    Google Scholar 

  • Oka K (1958b) Further studies on the localization of the respiratory centers of the frog. Journal of the Physiological Society of Japan 20:520–524

    Google Scholar 

  • Oyamada Y, Ballantyne D, Mückenhoff K, Scheid P (1998) Respiration-modulated membrane potential and chemosensitivity of locus coeruleus neurones in the in vitro brainstem–spinal cord of the neonatal rat. Journal of Physiology 513:381–398

    PubMed  CAS  Google Scholar 

  • Oyamada Y, Andrzejewski M, Mückenhoff K, Scheid P, Ballantyne D (1999) Locus coeruleus neurones in vitro: pH-sensitive oscillations of membrane potential in an electrically coupled network. Respiration Physiology 118:131–147

    PubMed  CAS  Google Scholar 

  • Pineda J, Aghajanian GK (1997) Carbon dioxide regulates the tonic activity of locus ceruleus neurons by modulating a proton- and polyamine-sensitive inward rectifier potassium current. Neuroscience 77:723–743

    PubMed  CAS  Google Scholar 

  • Putnam RW, Filosa JA, Ritucci NA (2004) Cellularmechanisms involved in CO2 and acid signaling in chemosensitive neurons. American Journal of Physiology 287:493–526

    Google Scholar 

  • Ravanelli MI, Almeida MC, Branco LG (2007) Role of the locus coeruleus carbon monoxide pathway in endotoxin fever in rats. Pflügers Archiv 453(4):471–476

    PubMed  CAS  Google Scholar 

  • Rees DD, Palmer R, Schultz R, Hodson H, Moncada S (1990) Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. British Journal of Pharmacology 101:746–752

    PubMed  CAS  Google Scholar 

  • Reid SG, Milsom WK, Munns SE, West NH (2000) Pulmonary vagal modulation of ventilation in toads (Bufo marinus). Respiration Physiology 120:213–230

    PubMed  CAS  Google Scholar 

  • Reil JC (1809) Untersuchungenüber den Bau des grossen Gehirns im Menschen. Archiv für Physiologie (Halle) 9:136–524

    Google Scholar 

  • Richerson GB (1999) pH and Brain Function; cellular mechanisms of sensitivity to pH in the mammalian respiratory system. In: Kaila K, Ransom BR (eds) pH and Brain Function. Wiley, New York, pp 509–533

    Google Scholar 

  • Russel GV (1955) The nucleus locus coeruleus (dorsolateralis tegmenti). Texas Reports on Biology and Medicine 13:939–988

    Google Scholar 

  • Sanchez AP, Hoffmann A, Rantin FT, Glass ML (2001) Relationship between cerebro-spinal fluid pH and pulmonary ventilation of the South American lungfish, Lepidosiren paradoxa (Fitz.). Journal of Experimental Zoology 290:421–425

    PubMed  CAS  Google Scholar 

  • Shirasawan S, Arata A, Onimaru H, Roth KA, Brown GA, Horning S, Arata S, Okumura K, Sasazuki T, Korsmeyer SJ (2000) Rnx deficiency results in congenital central hypoventilation. Nature Genetics 24(3):287–290

    Google Scholar 

  • Smatresk NJ, Smits W (1991) Effects of central and peripheral chemoreceptor stimulation on ventilation in the marine toad, Bufo marinus. Respiration Physiology 83:223–238

    PubMed  CAS  Google Scholar 

  • Soncini R, Glass ML (2000) The effects of temperature and hyperoxia on arterial PO2 and acid-base status in the teleost fish Pieractus mesopotamicus (Holmberg). Journal of Fish Biology 51:225–233

    Google Scholar 

  • Soto-Arape I, Burton MD, Kazemi H (1995) Central amino acid neurotransmitters and the hypoxic ventilatory response. American Journal of Respiratory and Critical Care medicine 151:1113–1120

    PubMed  CAS  Google Scholar 

  • Stunden CE, Filosa JA, Garcia AJ, Dean JB, Putnam RW (2001) Development of in vivo ventilatory and single chemosensitive neuron responses to hypercapnia in rats. Respiration Physiology 127(2–3):135–155

    PubMed  CAS  Google Scholar 

  • Sutin EL, Jacobowitz DM (1991) Neurochemicals in the dorsal pontine tegmentum. Progress in Brain Research 88:3–14

    PubMed  CAS  Google Scholar 

  • Sved AF, Felsten G (1987) Stimulation of the locus coeruleus decreases arterial pressure. Brain Research 414(1):19–32

    Google Scholar 

  • Svensson TH, Thorén P (1979) Brain noradrenergic neurons in the locus coeruleus: inhibition by blood volume load through vagal afferents. Brain Research 172(1):174–178

    PubMed  CAS  Google Scholar 

  • Teppema L, Berkenbosch A, Olievier C (1997) Effect of Nϖ-nitro-L-arginine on ventilatory response to hypercapnia in anesthetized cats. Journal of Applied Physiology 82:292–297

    PubMed  CAS  Google Scholar 

  • Torgerson CS, Gdovin MJ, Remmers JE (1998) Fictive gill and lung ventilation in the pre- and postmetamorphic tadpole brain stem. Journal of Neurophysiology 80:2015–2022

    PubMed  CAS  Google Scholar 

  • Van Bockstaele EJ, Colago EE, Aicher S (1998) Light and electron microscopic evidence for topo-graphic and monosynaptic projections from neurons in the ventral medulla to noradrenergic dendrites in the rat locus coeruleus. Brain Research 784:123–138

    PubMed  Google Scholar 

  • Van Bockstaele EJ, Saunders A, Telegan P, Page ME (1999) Localization of mu-opioid recep-tors to locus coeruleus-projecting neurons in the rostral medulla: morphological substrates and synaptic organization. Synapse 34:154–167

    PubMed  Google Scholar 

  • Van Vliet BN, West NH (1992) Functional characteristics of arterial chemoreceptors in the toad (Bufo marinus). Respiration Physiology 88:113–127

    PubMed  Google Scholar 

  • Viemari JC, Bévengut M, Burnet H, Coulon P, Pequignot JM, Tiveron MC, Hilaire G (2004) Phox2a gene, A6 neurons, and noradrenaline are essential for development of normal respiratory rhythm in mice. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 24:928–937

    CAS  Google Scholar 

  • Wang SR (2003) The nucleus isthmi and dual modulation of the receptive field of tectal neurons in non-mammals. Brain Research 41:13–25

    CAS  Google Scholar 

  • Wang SR, Wu GY, Felix D (1995) Avian Imc-tectal projection is mediated by acetylcholine and glutamate. Neuroscience Report 6:757–760

    CAS  Google Scholar 

  • Wang T, Taylor EW, Reid SG, Milsom WK (1999) Lung deflation stimulates fictive ventilation in decerebrate, paralyzed and unidirectionally ventilated toads (Bufo marinus). Respiration Physiology 118:181–191

    PubMed  CAS  Google Scholar 

  • Ward DG, Darlington DN 1987. A blood pressure lowering effect of lesions of the caudal periaqueductal gray: relationship to basal pressure. Brain Research 423(1–2):373–377

    PubMed  CAS  Google Scholar 

  • Watanabe K, Tanaka T, Yonemasu Y (1987) Ibotenic acid-induced limbic seizures and neuronal degeneration. Brain and nerve = Shinkei kenky¯u no shinpo Brain Nerve 39:505–508

    CAS  Google Scholar 

  • Wilson RJ, Vasilakos K, Harris MB, Straus C, Remmers JE (2002) Evidence that ventilatory rhythmogenesis in the frog involves two distinct neuronal oscillators. Journal of Physiology 540:557–70

    PubMed  CAS  Google Scholar 

  • Winn P (1991). Excitotoxins as tools for producing brain lesions. In. Conn PM (Ed.) Methods in neuroscience, Vol. 7, Lesions and transplantation. Academic, San Diego, pp 16–27

    Google Scholar 

Download references

Acknowledgements

Financial support from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. S. Branco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gargaglioni, L.H., Branco, L.G.S. (2009). Midbrain Structures and Control of Ventilation in Amphibians. In: Glass, M., Wood, S. (eds) Cardio-Respiratory Control in Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93985-6_11

Download citation

Publish with us

Policies and ethics