Skip to main content

Bile Acids and Their Role in Cholesterol Homeostasis

  • Chapter
  • First Online:
Cellular Lipid Metabolism

Abstract

Bile acids are synthesized from cholesterol and have long been thought to be just a degradation product with an additional function in food digestion. During the past decade many new functions of bile acids emerged and, instead of functioning at the interphase of the outside world and the body, bile acids turned out to be extremely important signal transduction molecules which play an important role in balancing flux through diverse metabolic pathways. In this chapter we focus on the function of bile acids in regulation of cholesterol homeostasis at both the cellular and organismal level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alrefai WA, Sarwar Z, Tyagi S, Saksena S, Dudeja PK, Gill RK (2005) Cholesterol modulates human intestinal sodium-dependent bile acid transporter. Am J Physiol Gastrointest Liver Physiol 288:G978–G985

    Article  CAS  Google Scholar 

  • Alrefai WA, Annaba F, Sarwar Z, Dwivedi A, Saksena S, Singla A, Dudeja PK, Gill RK (2007) Modulation of human Niemann–Pick C1-like 1 gene expression by sterol: role of sterol regulatory element binding protein 2. Am J Physiol Gastrointest Liver Physiol 292:G369–G376

    Article  CAS  Google Scholar 

  • Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, Maguire M, Golovko A, Zeng M, Wang L, Murgolo N, Graziano MP (2004) Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303:1201–1204

    Article  PubMed  CAS  Google Scholar 

  • Bahar RJ, Stolz A (1999) Bile acid transport. Gastroenterol Clin North Am 28:27–58

    Article  PubMed  CAS  Google Scholar 

  • Bays HE, Goldberg RB (2007) The ‘forgotten’ bile acid sequestrants: is now a good time to remember? Am J Ther 14:567–580

    Article  PubMed  Google Scholar 

  • Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, Kwiterovich P, Shan B, Barnes R, Hobbs HH (2000) Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290:1771–1775

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya AK, Eggen DA (1980) Cholesterol absorption and turnover in rhesus monkeys as measured by two methods. J Lipid Res 21:518–524

    PubMed  CAS  Google Scholar 

  • Bottcher RT, Niehrs C (2005) Fibroblast growth factor signaling during early vertebrate development. Endocr Rev 26:63–77

    Article  PubMed  CAS  Google Scholar 

  • Boulias K, Katrakili N, Bamberg K, Underhill P, Greenfield A, Talianidis I (2005) Regulation of hepatic metabolic pathways by the orphan nuclear receptor SHP. EMBO J 24:2624–2633

    Article  PubMed  CAS  Google Scholar 

  • Brown JM, Bell TA III, Alger HM, Sawyer JK, Smith TL, Kelley K, Shah R, Wilson MD, Davis MA, Lee RG, Graham MJ, Crooke RM, Rudel LL (2008) Targeted depletion of hepatic ACAT2-driven cholesterol esterification reveals a non-biliary route for fecal neutral sterol loss. J Biol Chem 283:10522–10534

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood, Proc Natl Acad Sci USA 96:11041–11048

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Chen G, Head DL, Mangelsdorf DJ, Russell DW (2007) Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice. Cell Metab 5:73–79

    Article  PubMed  CAS  Google Scholar 

  • Chevallier F (1960) Study of the origin of fecal sterols in the rat by means of radioactive indicators. 1. Demonstration of the secretion of sterols into the intestinal contents. Bull Soc Chim Biol 42:623–632

    PubMed  CAS  Google Scholar 

  • Chevallier F (1967) Dynamics of cholesterol in rats, studied by the isotopic equilibrium method. Adv Lipid Res 5:209–239

    PubMed  CAS  Google Scholar 

  • Chiang JY (2004) Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol 40:539–551

    Article  PubMed  CAS  Google Scholar 

  • Crouse JR, Grundy SM (1978) Evaluation of a continuous isotope feeding method for measurement of cholesterol absorption in man. J Lipid Res 19:967–971

    PubMed  CAS  Google Scholar 

  • Danielsson H (1960) On the origin of the neural fecal sterols and their relation to cholesterol metabolism in the rat. Acta Physiol Scand 48:364–372

    Article  PubMed  CAS  Google Scholar 

  • Dawson PA, Oelkers P (1995) Bile acid transporters. Curr Opin Lipidol 6:109–114

    Article  PubMed  CAS  Google Scholar 

  • Dawson PA, Hubbert M, Haywood J, Craddock AL, Zerangue N, Christian WV, Ballatori N (2005) The heteromeric organic solute transporter alpha-beta, Ostalpha-Ostbeta, is an ileal basolateral bile acid transporter, J Biol Chem 280:6960–6968

    Article  PubMed  CAS  Google Scholar 

  • del Castillo-Olivares A, Gil G (2000) Role of FXR and FTF in bile acid-mediated suppression of cholesterol 7alpha-hydroxylase transcription. Nucleic Acids Res 28:3587–3593

    Article  PubMed  CAS  Google Scholar 

  • Denson LA, Sturm E, Echevarria W, Zimmerman TL, Makishima M, Mangelsdorf DJ, Karpen SJ (2001) The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 121:140–147

    Article  PubMed  CAS  Google Scholar 

  • Dietschy JM, Turley SD (2002) Control of cholesterol turnover in the mouse. J Biol Chem 277:3801–3804

    Article  PubMed  CAS  Google Scholar 

  • Dueland S, Reichen J, Everson GT, Davis RA (1991) Regulation of cholesterol and bile acid homoeostasis in bile-obstructed rats. Biochem J 280:373–377

    PubMed  CAS  Google Scholar 

  • Engelking LJ, Liang G, Hammer RE, Takaishi K, Kuriyama H, Evers BM, Li WP, Horton JD, Goldstein JL, Brown MS (2005) Schoenheimer effect explained – feedback regulation of cholesterol synthesis in mice mediated by Insig proteins. J Clin Invest 115:2489–2498

    Article  PubMed  CAS  Google Scholar 

  • Galzie Z, Kinsella AR, Smith JA (1997) Fibroblast growth factors and their receptors. Biochem Cell Biol 75:669–685

    Article  PubMed  CAS  Google Scholar 

  • Ge L, Wang J, Qi W, Miao HH, Cao J, Qu YX, Li BL, Song BL (2008) The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab 7:508–519

    Article  PubMed  CAS  Google Scholar 

  • Goldfarb M (1996) Functions of fibroblast growth factors in vertebrate development. Cytokine Growth Factor Rev 7:311–325

    Article  PubMed  CAS  Google Scholar 

  • Gong Y, Lee JN, Lee PC, Goldstein JL, Brown MS, Ye J (2006) Sterol-regulated ubiquitination and degradation of Insig-1 creates a convergent mechanism for feedback control of cholesterol synthesis and uptake. Cell Metab 3:15–24

    Article  PubMed  CAS  Google Scholar 

  • Goodwin BJ, Zuercher WJ, Collins JL (2008) Recent advances in liver X receptor biology and chemistry. Curr Top Med Chem 8:781–791

    Article  PubMed  CAS  Google Scholar 

  • Grundy SM (1983) Absorption and metabolism of dietary cholesterol. Annu Rev Nutr 3:71–96

    Article  PubMed  CAS  Google Scholar 

  • Grundy SM, Ahrens EH Jr (1969) Measurements of cholesterol turnover, synthesis, and absorption in man, carried out by isotope kinetic and sterol balance methods. J Lipid Res 10:91–107

    PubMed  CAS  Google Scholar 

  • Gustafsson J (1978) Effect of biliary obstruction on 26-hydroxylation of C27-steroids in bile acid synthesis J Lipid Res 19:237–243

    PubMed  CAS  Google Scholar 

  • Hagenbuch B, Dawson P (2004) The sodium bile salt cotransport family SLC10. Pflugers Arch 447:566–570

    Article  PubMed  CAS  Google Scholar 

  • Hagenbuch B, Meier PJ (2004) Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch 447:653–665

    Article  PubMed  CAS  Google Scholar 

  • Hernell O, Staggers JE, Carey MC (1990) Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 2. Phase analysis and aggregation states of luminal lipids during duodenal fat digestion in healthy adult human beings. Biochemistry 29:2041–2056

    Article  PubMed  CAS  Google Scholar 

  • Hofmann AF (1990) Bile acid secretion, bile flow and biliary lipid secretion in humans. Hepatology 12:17S–25S

    PubMed  CAS  Google Scholar 

  • Hofmann AF (1999) The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 159:2647–2658

    Article  PubMed  CAS  Google Scholar 

  • Hofmann AF, Hagey LR (2008) Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 65:2461–2483

    Article  PubMed  CAS  Google Scholar 

  • Houten SM, Watanabe M, Auwerx J (2006) Endocrine functions of bile acids. EMBO J 25:1419–1425

    Article  PubMed  CAS  Google Scholar 

  • Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2:217–225

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Fujimori T, Furuya A, Satoh J, Nabeshima Y, Nabeshima Y (2005) Impaired negative feedback suppression of bile acid synthesis in mice lacking betaKlotho. J Clin Invest 115:2202–2208

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Kinoshita S, Shiraishi N, Nakagawa S, Sekine S, Fujimori T, Nabeshima YI (2000) Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mech Dev 98:115–119

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Fujimori T, Hayashizaki Y, Nabeshima Y (2002) Identification of a novel mouse membrane-bound family 1 glycosidase-like protein, which carries an atypical active site structure. Biochim Biophys Acta 1576:341–345

    PubMed  CAS  Google Scholar 

  • Jelinek DF, Andersson S, Slaughter CA, Russell DW (1990) Cloning and regulation of cholesterol 7 alpha-hydroxylase, the rate-limiting enzyme in bile acid biosynthesis, J Biol Chem 265:8190–8197

    PubMed  CAS  Google Scholar 

  • Jiang W, Miyamoto T, Kakizawa T, Nishio SI, Oiwa A, Takeda T, Suzuki S, Hashizume K (2006) Inhibition of LXRalpha signaling by vitamin D receptor: possible role of VDR in bile acid synthesis. Biochem Biophys Res Commun 351:176–184

    Article  PubMed  CAS  Google Scholar 

  • Jung D, Inagaki T, Gerard RD, Dawson PA, Kliewer SA, Mangelsdorf DJ, Moschetta A (2007) FXR agonists and FGF15 reduce fecal bile acid excretion in a mouse model of bile acid malabsorption. J Lipid Res 48:2693–2700

    Article  PubMed  CAS  Google Scholar 

  • Kim I, Ahn SH, Inagaki T, Choi M, Ito S, Guo GL, Kliewer SA, Gonzalez FJ (2007) Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res 48:2664–2672

    Article  PubMed  CAS  Google Scholar 

  • Knopfel M, Davies JP, Duong PT, Kvaerno L, Carreira EM, Phillips MC, Ioannou YA, Hauser H (2007) Multiple plasma membrane receptors but not NPC1L1 mediate high-affinity, ezetimibe-sensitive cholesterol uptake into the intestinal brush border membrane. Biochim Biophys Acta 1771:1140–1147

    PubMed  Google Scholar 

  • Kok T, Hulzebos CV, Wolters H, Havinga R, Agellon LB, Stellaard F, Shan B, Schwarz M, Kuipers F (2003) Enterohepatic circulation of bile salts in farnesoid X receptor-deficient mice: efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein. J Biol Chem 278:41930–41937

    Article  PubMed  CAS  Google Scholar 

  • Kosters A, Karpen SJ (2008) Bile acid transporters in health and disease. Xenobiotica 38:1043–1071

    Article  PubMed  CAS  Google Scholar 

  • Kosters A, Kunne C, Looije N, Patel SB, Oude Elferink RP, Groen AK (2006) The mechanism of ABCG5/ABCG8 in biliary cholesterol secretion in mice, J Lipid Res 47:1959–1966

    Article  PubMed  CAS  Google Scholar 

  • Kramer W, Glombik H, Petry S, Heuer H, Schafer H, Wendler W, Corsiero D, Girbig F, Weyland C (2000) Identification of binding proteins for cholesterol absorption inhibitors as components of the intestinal cholesterol transporter. FEBS Lett 487:293–297

    Article  PubMed  CAS  Google Scholar 

  • Kramer W, Girbig F, Corsiero D, Pfenninger A, Frick W, Jahne G, Rhein M, Wendler W, Lottspeich F, Hochleitner EO, Orso E, Schmitz G (2005) Aminopeptidase N (CD13) is a molecular target of the cholesterol absorption inhibitor ezetimibe in the enterocyte brush border membrane. J Biol Chem 280:1306–1320

    Article  PubMed  CAS  Google Scholar 

  • Kruit JK, Plosch T, Havinga R, Boverhof R, Groot PH, Groen AK, Kuipers F (2005) Increased fecal neutral sterol loss upon liver X receptor activation is independent of biliary sterol secretion in mice. Gastroenterology 128:147–156

    Article  PubMed  CAS  Google Scholar 

  • Kuipers F, Stroeve JH, Caron S, Staels B (2007) Bile acids, farnesoid X receptor, atherosclerosis and metabolic control. Curr Opin Lipidol 18:289–297

    Article  PubMed  CAS  Google Scholar 

  • Lambert G, Amar MJ, Guo G, Brewer HB Jr, Gonzalez FJ, Sinal CJ (2003) The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem 278:2563–2570

    Article  PubMed  CAS  Google Scholar 

  • Langheim S, Yu L, Von Bergmann K, Lutjohann D, Xu F, Hobbs HH, Cohen JC (2005) ABCG5 and ABCG8 require MDR2 for secretion of cholesterol into bile. J Lipid Res 46:1732–1738

    Article  PubMed  CAS  Google Scholar 

  • Lee YK, Moore DD (2002) Dual mechanisms for repression of the monomeric orphan receptor liver receptor homologous protein-1 by the orphan small heterodimer partner. J Biol Chem 277:2463–2467

    Article  PubMed  CAS  Google Scholar 

  • Li T, Ma H, Chiang JY (2008) TGFbeta1, TNFalpha, and insulin signaling crosstalk in regulation of the rat cholesterol 7alpha-hydroxylase gene expression, J Lipid Res 49:1981–1989

    Article  PubMed  CAS  Google Scholar 

  • Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B (1999) Identification of a nuclear receptor for bile acids. Science 284:1362–1365

    Article  PubMed  CAS  Google Scholar 

  • Meier PJ, Stieger B (2000) Molecular mechanisms in bile formation. News Physiol Sci 15:89–93

    PubMed  CAS  Google Scholar 

  • Miettinen TA (1970) Detection of changes in human cholesterol metabolism. Ann Clin Res 2:300–320

    PubMed  CAS  Google Scholar 

  • Miettinen TA, Proia A, McNamara DJ (1981) Origins of fecal neutral steroids in rats. J Lipid Res 22:485–495

    PubMed  CAS  Google Scholar 

  • Miettinen TA, Tilvis RS, Kesaniemi YA (1990) Serum plant sterols and cholesterol precursors reflect cholesterol absorption and synthesis in volunteers of a randomly selected male population. Am J Epidemiol 131:20–31

    PubMed  CAS  Google Scholar 

  • Nagano M, Kuroki S, Mizuta A, Furukawa M, Noshiro M, Chijiiwa K, Tanaka M (2004) Regulation of bile acid synthesis under reconstructed enterohepatic circulation in rats. Steroids 69:701–719

    Article  PubMed  CAS  Google Scholar 

  • Nakahara M, Furuya N, Takagaki K, Sugaya T, Hirota K, Fukamizu A, Kanda T, Fujii H, Sato R (2005) Ileal bile acid-binding protein, functionally associated with the farnesoid X receptor or the ileal bile acid transporter, regulates bile acid activity in the small intestine. J Biol Chem 280:42283–42289

    Article  PubMed  CAS  Google Scholar 

  • Norlin M, Wikvall K (2007) The enzymes in the conversion of cholesterol into bile acids. Curr Mol Med 7:199–218

    Article  PubMed  CAS  Google Scholar 

  • Oude Elferink RP, Paulusma CC, Groen AK (2006) Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases. Gastroenterology 130:908–925

    Article  PubMed  CAS  Google Scholar 

  • Pandak WM, Schwarz C, Hylemon PB, Mallonee D, Valerie K, Heuman DM, Fisher RA, Redford K, Vlahcevic ZR (2001) Effects of CYP7A1 overexpression on cholesterol and bile acid homeostasis. Am J Physiol Gastrointest Liver Physiol 281:G878–G889

    PubMed  CAS  Google Scholar 

  • Peet DJ, Janowski BA, Mangelsdorf DJ (1998a) The LXRs: a new class of oxysterol receptors. Curr Opin Genet Dev 8:571–575

    Article  PubMed  CAS  Google Scholar 

  • Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE, Mangelsdorf DJ (1998b) Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 93:693–704

    Article  PubMed  CAS  Google Scholar 

  • Peng SK, Ho KJ, Taylor CB (1974) The role of the intestinal mucosa in cholesterol metabolism: its relation to plasma and luminal cholesterol. Exp Mol Pathol 21:138–153

    Article  PubMed  CAS  Google Scholar 

  • Pertsemlidis D, Kirchman EH, Ahrens EH Jr (1973) Regulation of cholesterol metabolism in the dog I Effects of complete bile diversion and of cholesterol feeding on absorption, synthesis, accumulation, and excretion rates measured during life. J Clin Invest 52:2353–2367

    Article  PubMed  CAS  Google Scholar 

  • Phillips GB (1960) The lipid composition of human bile. Biochim Biophys Acta 41:361–363

    Article  PubMed  CAS  Google Scholar 

  • Quinet EM, Savio DA, Halpern AR, Chen L, Schuster GU, Gustafsson JA, Basso MD, Nambi P (2006) Liver X receptor (LXR)-beta regulation in LXRalpha-deficient mice: implications for therapeutic targeting. Mol Pharmacol 70:1340–1349

    Article  PubMed  CAS  Google Scholar 

  • Rader DJ (2007) Liver X receptor and farnesoid X receptor as therapeutic targets. Am J Cardiol 100:n15–n19

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL (2007) Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc Natl Acad Sci USA 104:6511–6518

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum SB, Huynh T, Afonso A, Davis HR Jr, Yumibe N, Clader JW, Burnett DA (1998) Discovery of 1-(4-fluorophenyl)-(3R)-[3-(4-fluorophenyl)-(3S)-hydroxypropyl]-(4S)-(4 -hydroxyphenyl)-2-azetidinone (SCH 58235): a designed, potent, orally active inhibitor of cholesterol absorption. J Med Chem 41:973–980

    Article  PubMed  CAS  Google Scholar 

  • Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 72:137–174

    Article  PubMed  CAS  Google Scholar 

  • Samuel P, McNamara DJ (1983) Differential absorption of exogenous and endogenous cholesterol in man. J Lipid Res 24:265–276

    PubMed  CAS  Google Scholar 

  • Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RJ, Mohammadi M (2000) Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 6:743–750

    Article  PubMed  CAS  Google Scholar 

  • Scotti E, Gilardi F, Godio C, Gers E, Krneta J, Mitro N, De FE, Caruso D, Crestani M (2007) Bile acids and their signaling pathways: eclectic regulators of diverse cellular functions. Cell Mol Life Sci 64:2477–2491

    Article  PubMed  CAS  Google Scholar 

  • Simmonds WJ, Hofmann AF, Theodor E (1967) Absorption of cholesterol from a micellar solution: intestinal perfusion studies in man. J Clin Invest 46:874–890

    Article  PubMed  CAS  Google Scholar 

  • Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ (2000) Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102:731–744

    Article  PubMed  CAS  Google Scholar 

  • Small DM (2003) Role of ABC transporters in secretion of cholesterol from liver into bile. Proc Natl Acad Sci USA 100:4–6

    Article  PubMed  CAS  Google Scholar 

  • Sperry WM (1927) Lipid excretion IV A study of the relationship of the bile to the fecal lipids with special reference to certain problems of sterol metabolism. J Biol Chem 1:351–378

    Google Scholar 

  • Stieger B, Meier Y, Meier PJ (2007) The bile salt export pump. Pflugers Arch 453:611–620

    Article  PubMed  CAS  Google Scholar 

  • Thomas C, Auwerx J, Schoonjans K (2008) Bile acids and the membrane bile acid receptor TGR5 – connecting nutrition and metabolism. Thyroid 18:167–174

    Article  PubMed  CAS  Google Scholar 

  • van der Velde AE, Vrins CL, van den O K, Kunne C, Oude Elferink RP, Kuipers F, Groen AK (2007) Direct intestinal cholesterol secretion contributes significantly to total fecal neutral sterol excretion in mice. Gastroenterology 133:967–975

    Article  PubMed  CAS  Google Scholar 

  • van der Velde AE, Vrins CL, van den O K, Seemann I, Oude Elferink RP, Kuipers F, Groen AK (2008) Regulation of direct transintestinal cholesterol excretion in mice. Am J Physiol Gastrointest Liver Physiol 295:G203–G208

    Article  PubMed  CAS  Google Scholar 

  • Vrins C, Vink E, Vandenberghe KE, Frijters R, Seppen J, Groen AK (2007) The sterol transporting heterodimer ABCG5/ABCG8 requires bile salts to mediate cholesterol efflux. FEBS Lett 581:4616–4620

    Article  PubMed  CAS  Google Scholar 

  • Wang DQ (2007) Regulation of intestinal cholesterol absorption. Annu Rev Physiol 69:221–248

    Article  PubMed  CAS  Google Scholar 

  • Wang DQ, Lee SP (2008) Physical chemistry of intestinal absorption of biliary cholesterol in mice. Hepatology 48:177–185

    Article  PubMed  CAS  Google Scholar 

  • Wang DQ, Paigen B, Carey MC (2001) Genetic factors at the enterocyte level account for variations in intestinal cholesterol absorption efficiency among inbred strains of mice. J Lipid Res 42:1820–1830

    PubMed  CAS  Google Scholar 

  • Wang L, Han Y, Kim CS, Lee YK, Moore DD (2003) Resistance of SHP-null mice to bile acid-induced liver damage. J Biol Chem 278:44475–44481

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, Moore DD, Auwerx J (2004) Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 113:1408–1418

    PubMed  CAS  Google Scholar 

  • Wiedlocha A, Sorensen V (2004) Signaling, internalization, and intracellular activity of fibroblast growth factor. Curr Top Microbiol Immunol 286:45–79

    PubMed  CAS  Google Scholar 

  • Wilson JD (1964) The quantification of cholesterol excretion and degradation in the isotopic steady state in the rat: the influence of dietary cholesterol. J Lipid Res 5:409–417

    PubMed  CAS  Google Scholar 

  • Xie MH, Holcomb I, Deuel B, Dowd P, Huang A, Vagts A, Foster J, Liang J, Brush J, Gu Q, Hillan K, Goddard A, Gurney AL (1999) FGF-19, a novel fibroblast growth factor with unique specificity for FGFR4. Cytokine 11:729–735

    Article  PubMed  CAS  Google Scholar 

  • Yu C, Wang F, Kan M, Jin C, Jones RB, Weinstein M, Deng CX, McKeehan WL (2000) Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J Biol Chem 275:15482–15489

    Article  PubMed  CAS  Google Scholar 

  • Yu C, Wang F, Jin C, Huang X, McKeehan WL (2005) Independent repression of bile acid synthesis and activation of c-Jun N-terminal kinase (JNK) by activated hepatocyte fibroblast growth factor receptor 4 (FGFR4) and bile acids. J Biol Chem 280:17707–17714

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Hammer RE, Li-Hawkins J, Von Bergmann K, Lutjohann D, Cohen JC, Hobbs HH (2002a) Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci USA 99:16237–16242

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Li-Hawkins J, Hammer RE, Berge KE, Horton JD, Cohen JC, Hobbs HH (2002b) Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest 110:671–680

    PubMed  CAS  Google Scholar 

  • Zimber A, Gespach C (2008) Bile acids and derivatives, their nuclear receptors FXR, PXR and ligands: role in health and disease and their therapeutic potential. Anticancer Agents Med Chem 8:540–563

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bijl, N., van der Velde, A., Groen, A.K. (2009). Bile Acids and Their Role in Cholesterol Homeostasis. In: Ehnholm, C. (eds) Cellular Lipid Metabolism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00300-4_4

Download citation

Publish with us

Policies and ethics