Skip to main content

RNA Interference-Based Therapies Against Brain Tumors: Potential Clinical Strategies

  • Chapter
  • First Online:
Therapeutic Ribonucleic Acids in Brain Tumors

Abstract

Harnessing the transcriptional pathway as a “master-switch” for re-profiling of aberrant signaling and metabolic cascades of tumors provides a novel mode of clinical intervention, particularly against neoplasms that are refractive to standard therapies. Brain tumors are prime candidates for new modes of therapy, as conventional therapies including surgical intervention, radiotherapy, and chemotherapy fare poorly against them. Two potent molecular techniques are available for interfering with a tumor's transcriptional machinery, i.e., small interfering RNA (siRNA), designed and administered exogenously, and microRNA (miRNA), an endogenous, self-regulated cellular repertoire of molecules that impart a tertiary level of gene regulation above and over the influence of classical signal transduction pathways. Both RNAi moieties are currently being examined in preclinical settings for their potential utility against malignant gliomas in future clinical applications. In this chapter, we will examine the glioma-specific cellular strategies that are presented for targeting via both siRNA and miRNA. Current progress in brain tumor-directed targeting of therapeutic amounts of RNAi, including those developed for traversing the blood–brain barrier will also be discussed. The challenges that need to be overcome in utilizing miRNA in a future clinical strategy against glioma, and imaging techniques under development for visualizing RNAi delivery will also be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

siRNA:

Short interfering RNA

shRNA:

Short-hairpin RNA

miRNA:

MicroRNA

References

  • Aloy MT, Hadchity E, Bionda C et al (2008) Protective role of Hsp27 protein against gamma radiation-induced apoptosis and radiosensitization effects of Hsp27 gene silencing in different human tumor cells. Int J Radiat Oncol Biol Phys 70:543–553

    CAS  PubMed  Google Scholar 

  • Amarzguioui M, Lundberg P, Cantin E et al (2006) Rational design and in vitro and in vivo delivery of Dicer substrate siRNA. Nat Protoc 1:508–517

    CAS  PubMed  Google Scholar 

  • Amos S, Mut M, diPierro CG et al (2007) Protein kinase C-alpha-mediated regulation of low-density lipoprotein receptor related protein and urokinase increases astrocytoma invasion. Cancer Res 67:10241–10251

    CAS  PubMed  Google Scholar 

  • Angelastro JM, Canoll PD, Kuo J et al (2006) Selective destruction of glioblastoma cells by interference with the activity or expression of ATF5. Oncogene 25:907–916

    CAS  PubMed  Google Scholar 

  • Arwert E, Hingtgen S, Figueiredo JL et al (2007) Visualizing the dynamics of EGFR activity and antiglioma therapies in vivo. Cancer Res 67:7335–7342

    CAS  PubMed  Google Scholar 

  • Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247

    CAS  PubMed  Google Scholar 

  • Belkaid A, Copland IB, Massillon D et al (2006) Silencing of the human microsomal glucose-6-phosphate translocase induces glioma cell death: potential new anticancer target for curcumin. FEBS Lett 580:3746–3752

    CAS  PubMed  Google Scholar 

  • Belkaid A, Fortier S, Cao J et al (2007) Necrosis induction in glioblastoma cells reveals a new “bioswitch” function for the MT1-MMP/G6PT signaling axis in proMMP-2 activation versus cell death decision. Neoplasia 9:332–340

    CAS  PubMed  Google Scholar 

  • Birchler JA, Kavi HH (2008) Molecular biology. Slicing and dicing for small RNAs. Science 320:1023–1024

    CAS  PubMed  Google Scholar 

  • Boado RJ (2005) RNA interference and nonviral targeted gene therapy of experimental brain cancer. NeuroRx 2:139–150

    PubMed  Google Scholar 

  • Boado RJ (2007) Blood-brain barrier transport of non-viral gene and RNAi therapeutics. Pharm Res 24:1772–1787

    CAS  PubMed  Google Scholar 

  • Bridge AJ, Pebernard S, Ducraux A et al (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 34:263–264

    CAS  PubMed  Google Scholar 

  • Brown R, Morash B, Ur E et al (2005) RNAi-mediated silencing of leptin gene expression increases cell death in C6 glioblastoma cells. Brain Res Mol Brain Res 139:357–360

    CAS  PubMed  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    CAS  PubMed  Google Scholar 

  • Bumcrot D, Manoharan M, Koteliansky V et al (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2:711–719

    CAS  PubMed  Google Scholar 

  • Cameron AJ, Procyk KJ, Leitges M et al (2008) PKC alpha protein but not kinase activity is critical for glioma cell proliferation and survival. Int J Cancer 123:769–779

    CAS  PubMed  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    CAS  PubMed  Google Scholar 

  • Chang K, Elledge SJ, Hannon GJ (2006) Lessons from Nature: microRNA-based shRNA libraries. Nat Methods 3:707–714

    CAS  PubMed  Google Scholar 

  • Chen AA, Derfus AM, Khetani SR et al (2005) Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res 33:e190

    PubMed  Google Scholar 

  • Chuang YY, Tran NL, Rusk N et al (2004) Role of synaptojanin 2 in glioma cell migration and invasion. Cancer Res 64:8271–8275

    CAS  PubMed  Google Scholar 

  • Clark AJ, Chan DC, Chen MY et al (2007) Down-regulation of Wilms' tumor 1 expression in glioblastoma cells increases radiosensitivity independently of p53. J Neurooncol 83:163–172

    CAS  PubMed  Google Scholar 

  • Corsten MF, Miranda R, Kasmieh R et al (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67:8994–9000

    CAS  PubMed  Google Scholar 

  • Cullen BR (2006a) Enhancing and confirming the specificity of RNAi experiments. Nat Methods 3:677–681

    CAS  PubMed  Google Scholar 

  • Cullen BR (2006b) Induction of stable RNA interference in mammalian cells. Gene Ther 13:503–508

    CAS  PubMed  Google Scholar 

  • Dirks PB (2008) Brain tumor stem cells: bringing order to the chaos of brain cancer. J Clin Oncol 26:2916–2924

    PubMed  Google Scholar 

  • Ehtesham M, Winston JA, Kabos P et al (2006) CXCR4 expression mediates glioma cell invasiveness. Oncogene 25:2801–2806

    CAS  PubMed  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W et al (2001a) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    CAS  PubMed  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001b) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    CAS  PubMed  Google Scholar 

  • Emdad L, Sarkar D, Su ZZ et al (2007) Astrocyte elevated gene-1: recent insights into a novel gene involved in tumor progression, metastasis and neurodegeneration. Pharmacol Ther 114:155–170

    CAS  PubMed  Google Scholar 

  • Fan QW, Weiss WA (2005) RNA interference against a glioma-derived allele of EGFR induces blockade at G2M. Oncogene 24:829–837

    CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    CAS  PubMed  Google Scholar 

  • Fountaine TM, Wood MJ, Wade-Martins R (2005) Delivering RNA interference to the mammalian brain. Curr Gene Ther 5:399–410

    CAS  PubMed  Google Scholar 

  • Friese MA, Wischhusen J, Wick W et al (2004a) RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64:7596–7603

    CAS  PubMed  Google Scholar 

  • Friese MA, Wischhusen J, Wick W et al (2004b) RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64:7596–7603

    CAS  PubMed  Google Scholar 

  • Fujiwara S, Nakagawa K, Harada H et al (2007) Silencing hypoxia-inducible factor-1alpha inhibits cell migration and invasion under hypoxic environment in malignant gliomas. Int J Oncol 30:793–802

    CAS  PubMed  Google Scholar 

  • Gabriely G, Wurdinger T, Kesari S et al (2008) MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28:5369–5380

    CAS  PubMed  Google Scholar 

  • Gillespie DL, Whang K, Ragel BT et al (2007) Silencing of hypoxia inducible factor-1alpha by RNA interference attenuates human glioma cell growth in vivo. Clin Cancer Res 13:2441–2448

    CAS  PubMed  Google Scholar 

  • Goga A, Benz C (2007) Anti-oncomir suppression of tumor phenotypes. Mol Interv 7:199–202

    CAS  PubMed  Google Scholar 

  • Gondi CS, Lakka SS, Dinh DH et al (2004a) Downregulation of uPA, uPAR and MMP-9 using small, interfering, hairpin RNA (siRNA) inhibits glioma cell invasion, angiogenesis and tumor growth. Neuron Glia Biol 1:165–176

    PubMed  Google Scholar 

  • Gondi CS, Lakka SS, Dinh DH et al (2004b) RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene 23:8486–8496

    CAS  PubMed  Google Scholar 

  • Gondi CS, Lakka SS, Dinh DH et al (2007) Intraperitoneal injection of a hairpin RNA-expressing plasmid targeting urokinase-type plasminogen activator (uPA) receptor and uPA retards angiogenesis and inhibits intracranial tumor growth in nude mice. Clin Cancer Res 13:4051–4060

    CAS  PubMed  Google Scholar 

  • Guo S, Kemphues KJ (1995) par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81:611–620

    CAS  PubMed  Google Scholar 

  • He L, Thomson JM, Hemann MT et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833

    CAS  PubMed  Google Scholar 

  • Heidel JD, Hu S, Liu XF et al (2004) Lack of interferon response in animals to naked siRNAs. Nat Biotechnol 22:1579–1582

    CAS  PubMed  Google Scholar 

  • Hoelzinger DB, Nakada M, Demuth T et al (2008) Autotaxin: a secreted autocrine/paracrine factor that promotes glioma invasion. J Neurooncol 86:297–309

    CAS  PubMed  Google Scholar 

  • Hong X, Jiang F, Kalkanis SN et al (2007) Decrease of endogenous vascular endothelial growth factor may not affect glioma cell proliferation and invasion. J Exp Ther Oncol 6:219–229

    CAS  PubMed  Google Scholar 

  • Hubbell HR, Boyer JE, Roane P et al (1991) Cyclic AMP mediates the direct antiproliferative action of mismatched double-stranded RNA. Proc Natl Acad Sci USA 88:906–910

    CAS  PubMed  Google Scholar 

  • Hwang JH, Smith CA, Salhia B et al (2008) The role of fascin in the migration and invasiveness of malignant glioma cells. Neoplasia 10:149–159

    CAS  PubMed  Google Scholar 

  • Iwamaru A, Kondo Y, Iwado E et al (2007) Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene 26:1840–1851

    CAS  PubMed  Google Scholar 

  • Jackson AL, Burchard J, Schelter J et al (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12:1179–1187

    CAS  PubMed  Google Scholar 

  • Jain KK (2007) Use of nanoparticles for drug delivery in glioblastoma multiforme. Expert Rev Neurother 7:363–372

    CAS  PubMed  Google Scholar 

  • Jensen RL, Ragel BT, Whang K et al (2006) Inhibition of hypoxia inducible factor-1alpha (HIF-1alpha) decreases vascular endothelial growth factor (VEGF) secretion and tumor growth in malignant gliomas. J Neurooncol 78:233–247

    CAS  PubMed  Google Scholar 

  • Kang CS, Pu PY, Li YH et al (2005) An in vitro study on the suppressive effect of glioma cell growth induced by plasmid-based small interference RNA (siRNA) targeting human epidermal growth factor receptor. J Neurooncol 74:267–273

    CAS  PubMed  Google Scholar 

  • Kang CS, Zhang ZY, Jia ZF et al (2006) Suppression of EGFR expression by antisense or small interference RNA inhibits U251 glioma cell growth in vitro and in vivo. Cancer Gene Ther 13:530–538

    CAS  PubMed  Google Scholar 

  • Kargiotis O, Chetty C, Gondi CS et al (2008) Adenovirus-mediated transfer of siRNA against MMP-2 mRNA results in impaired invasion and tumor-induced angiogenesis, induces apoptosis in vitro and inhibits tumor growth in vivo in glioblastoma. Oncogene 27:4830–4840

    CAS  PubMed  Google Scholar 

  • Kefas B, Godlewski J, Comeau L et al (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68:3566–3572

    CAS  PubMed  Google Scholar 

  • Ketting RF, Haverkamp TH, van Luenen HG et al (1999) Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99:133–141

    CAS  PubMed  Google Scholar 

  • Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    CAS  PubMed  Google Scholar 

  • Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 22:165–173

    CAS  PubMed  Google Scholar 

  • Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8:173–184

    CAS  PubMed  Google Scholar 

  • Kim DH, Behlke MA, Rose SD et al (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23:222–226

    CAS  PubMed  Google Scholar 

  • Kishi Y, Okudaira S, Tanaka M et al (2006) Autotaxin is overexpressed in glioblastoma multiforme and contributes to cell motility of glioblastoma by converting lysophosphatidylcholine to lysophosphatidic acid. J Biol Chem 281:17492–17500

    CAS  PubMed  Google Scholar 

  • Konnikova L, Kotecki M, Kruger MM et al (2003) Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells. BMC Cancer 3:23

    PubMed  Google Scholar 

  • Krol J, Krzyzosiak WJ (2004) Structural aspects of microRNA biogenesis. IUBMB Life 56:95–100

    CAS  PubMed  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    PubMed  Google Scholar 

  • Kugler W, Buchholz F, Kohler F et al (2005) Downregulation of Apaf-1 and caspase-3 by RNA interference in human glioma cells: consequences for erucylphosphocholine-induced apoptosis. Apoptosis 10:1163–1174

    CAS  PubMed  Google Scholar 

  • Kumar P, Wu H, McBride JL et al (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43

    CAS  PubMed  Google Scholar 

  • Lakka SS, Gondi CS, Yanamandra N et al (2004) Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene 23:4681–4689

    CAS  PubMed  Google Scholar 

  • Lakka SS, Gondi CS, Dinh DH et al (2005) Specific interference of urokinase-type plasminogen activator receptor and matrix metalloproteinase-9 gene expression induced by double-stranded RNA results in decreased invasion, tumor growth, and angiogenesis in gliomas. J Biol Chem 280:21882–21892

    CAS  PubMed  Google Scholar 

  • Lau NC, Seto AG, Kim J et al (2006) Characterization of the piRNA complex from rat testes. Science 313:363–367

    CAS  PubMed  Google Scholar 

  • Le Bras M, Borgne-Sanchez A, Touat Z et al (2006) Chemosensitization by knockdown of adenine nucleotide translocase-2. Cancer Res 66:9143–9152

    PubMed  Google Scholar 

  • Le Mercier M, Lefranc F, Mijatovic T et al (2008a) Evidence of galectin-1 involvement in glioma chemoresistance. Toxicol Appl Pharmacol 229:172–183

    PubMed  Google Scholar 

  • Le Mercier M, Mathieu V, Haibe-Kains B et al (2008b) Knocking down galectin 1 in human hs683 glioblastoma cells impairs both angiogenesis and endoplasmic reticulum stress responses. J Neuropathol Exp Neurol 67:456–469

    PubMed  Google Scholar 

  • Le Y, Iribarren P, Zhou Y et al (2004) Silencing the formylpeptide receptor FPR by short-interfering RNA. Mol Pharmacol 66:1022–1028

    CAS  PubMed  Google Scholar 

  • Lee SH, McCormick F (2005) Downregulation of Skp2 and p27/Kip1 synergistically induces apoptosis in T98G glioblastoma cells. J Mol Med 83:296–307

    CAS  PubMed  Google Scholar 

  • Lesniak MS (2005) Novel advances in drug delivery to brain cancer. Technol Cancer Res Treat 4:417–428

    CAS  PubMed  Google Scholar 

  • Lipinski CA, Tran NL, Menashi E et al (2005) The tyrosine kinase pyk2 promotes migration and invasion of glioma cells. Neoplasia 7:435–445

    CAS  PubMed  Google Scholar 

  • Liu J, Carmell MA, Rivas FV et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    CAS  PubMed  Google Scholar 

  • Liu X, Fortin K, Mourelatos Z (2008) MicroRNAs: biogenesis and molecular functions. Brain Pathol 18:113–121

    CAS  PubMed  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    PubMed  Google Scholar 

  • Mathupala SP, Parajuli P, Sloan AE (2004) Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study. Neurosurgery 55:1410–1419; discussion 1419

    PubMed  Google Scholar 

  • Mathupala SP, Guthikonda M, Sloan AE (2006) RNAi based approaches to the treatment of malignant glioma. Technol Cancer Res Treat 5:261–269

    CAS  PubMed  Google Scholar 

  • Mathupala SP, Mittal S, Guthikonda M et al (2007) MicroRNA and brain tumors: a cause and a cure? DNA Cell Biol 26:301–310

    CAS  PubMed  Google Scholar 

  • Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35

    CAS  PubMed  Google Scholar 

  • Medarova Z, Pham W, Farrar C et al (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13:372–377

    CAS  PubMed  Google Scholar 

  • Meltzer PS (2005) Cancer genomics: small RNAs with big impacts. Nature 435:745–746

    CAS  PubMed  Google Scholar 

  • Myslinski E, Ame JC, Krol A et al (2001) An unusually compact external promoter for RNA polymerase III transcription of the human H1RNA gene. Nucleic Acids Res 29:2502–2509

    CAS  PubMed  Google Scholar 

  • Nakada M, Niska JA, Tran NL et al (2005) EphB2/R-Ras signaling regulates glioma cell adhesion, growth, and invasion. Am J Pathol 167:565–576

    CAS  PubMed  Google Scholar 

  • Nakada M, Drake KL, Nakada S et al (2006) Ephrin-B3 ligand promotes glioma invasion through activation of Rac1. Cancer Res 66:8492–8500

    CAS  PubMed  Google Scholar 

  • Nakano I, Masterman-Smith M, Saigusa K et al (2008) Maternal embryonic leucine zipper kinase is a key regulator of the proliferation of malignant brain tumors, including brain tumor stem cells. J Neurosci Res 86:48–60

    CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    CAS  PubMed  Google Scholar 

  • Nelson P, Kiriakidou M, Sharma A, et al (2003) The microRNA world: small is mighty. Trends Biochem Sci 28:534–540

    CAS  PubMed  Google Scholar 

  • Niola F, Evangelisti C, Campagnolo L et al (2006) A plasmid-encoded VEGF siRNA reduces glioblastoma angiogenesis and its combination with interleukin-4 blocks tumor growth in a xenograft mouse model. Cancer Biol Ther 5:174–179

    CAS  PubMed  Google Scholar 

  • Nowak S, Zukiel R, Barciszewska AM et al (2005) The diagnosis and therapy of brain tumours. Folia Neuropathol 43:193–196

    CAS  PubMed  Google Scholar 

  • Okhrimenko H, Lu W, Xiang C et al (2005) Protein kinase C-epsilon regulates the apoptosis and survival of glioma cells. Cancer Res 65:7301–7309

    CAS  PubMed  Google Scholar 

  • Pallini R, Sorrentino A, Pierconti F et al (2006) Telomerase inhibition by stable RNA interference impairs tumor growth and angiogenesis in glioblastoma xenografts. Int J Cancer 118:2158–2167

    CAS  PubMed  Google Scholar 

  • Pardridge WM (2004) Intravenous, non-viral RNAi gene therapy of brain cancer. Expert Opin Biol Ther 4:1103–1113

    CAS  PubMed  Google Scholar 

  • Pardridge WM (2007) shRNA and siRNA delivery to the brain. Adv Drug Deliv Rev 59:141–152

    CAS  PubMed  Google Scholar 

  • Patel R, Win H, Desai S (2008) Involvement of PKC-iota in glioma proliferation. Cell Prolif 41:122–135

    CAS  PubMed  Google Scholar 

  • Pillai RS (2005) MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11:1753–1761

    CAS  PubMed  Google Scholar 

  • Pirollo KF, Chang EH (2008) Targeted delivery of small interfering RNA: approaching effective cancer therapies. Cancer Res 68:1247–1250

    CAS  PubMed  Google Scholar 

  • Preall JB, He Z, Gorra JM et al (2006) Short interfering RNA strand selection is independent of dsRNA processing polarity during RNAi in Drosophila. Curr Biol 16:530–535

    CAS  PubMed  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    CAS  PubMed  Google Scholar 

  • Ren W, Duan Y, Yang Y et al (2008) Down-regulation of Stat3 induces apoptosis of human glioma cell: a potential method to treat brain cancer. Neurol Res 30:297–301

    CAS  PubMed  Google Scholar 

  • Reynolds A, Leake D, Boese Q et al (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    CAS  PubMed  Google Scholar 

  • Reynolds A, Anderson EM, Vermeulen A et al (2006) Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA 12:988–993

    CAS  PubMed  Google Scholar 

  • Robb GB, Brown KM, Khurana J et al (2005) Specific and potent RNAi in the nucleus of human cells. Nat Struct Mol Biol 12:133–137

    CAS  PubMed  Google Scholar 

  • Rose SD, Kim DH, Amarzguioui M et al (2005) Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res 33:4140–4156

    CAS  PubMed  Google Scholar 

  • Saito T, Hama S, Izumi H et al (2008) Centrosome amplification induced by survivin suppression enhances both chromosome instability and radiosensitivity in glioma cells. Br J Cancer 98:345–355

    CAS  PubMed  Google Scholar 

  • Saydam O, Glauser DL, Heid I et al (2005) Herpes simplex virus 1 amplicon vector-mediated siRNA targeting epidermal growth factor receptor inhibits growth of human glioma cells in vivo. Mol Ther 12:803–812

    CAS  PubMed  Google Scholar 

  • Schwarz DS, Hutvagner G, Du T et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    CAS  PubMed  Google Scholar 

  • Shi Q, Bao S, Song L et al (2007) Targeting SPARC expression decreases glioma cellular survival and invasion associated with reduced activities of FAK and ILK kinases. Oncogene 26:4084–4094

    CAS  PubMed  Google Scholar 

  • Silber J, Lim DA, Petritsch C et al (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14

    PubMed  Google Scholar 

  • Silva JM, Li MZ, Chang K et al (2005) Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 37:1281–1288

    CAS  PubMed  Google Scholar 

  • Siolas D, Lerner C, Burchard J et al (2005) Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 23:227–231

    CAS  PubMed  Google Scholar 

  • Sioud M (2006) RNA interference below the immune radar. Nat Biotechnol 24:521–522

    CAS  PubMed  Google Scholar 

  • Sledz CA, Holko M, de Veer MJ et al (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5:834–839

    CAS  PubMed  Google Scholar 

  • Sloan KE, Eustace BK, Stewart JK et al (2004) CD155/PVR plays a key role in cell motility during tumor cell invasion and migration. BMC Cancer 4:73

    PubMed  Google Scholar 

  • Stegh AH, Kim H, Bachoo RM et al (2007) Bcl2L12 inhibits post-mitochondrial apoptosis signaling in glioblastoma. Genes Dev 21:98–111

    CAS  PubMed  Google Scholar 

  • Stegh AH, Kesari S, Mahoney JE et al (2008) Bcl2L12-mediated inhibition of effector caspase-3 and caspase-7 via distinct mechanisms in glioblastoma. Proc Natl Acad Sci USA 105:10703–10708

    CAS  PubMed  Google Scholar 

  • Strik HM, Schmidt K, Lingor P et al (2007) Galectin-1 expression in human glioma cells: modulation by ionizing radiation and effects on tumor cell proliferation and migration. Oncol Rep 18:483–488

    CAS  PubMed  Google Scholar 

  • Stupp R, Hegi ME (2007) Targeting brain-tumor stem cells. Nat Biotechnol 25:193–194

    CAS  PubMed  Google Scholar 

  • Takenaga K, Kozlova EN (2006) Role of intracellular S100A4 for migration of rat astrocytes. Glia 53:313–321

    PubMed  Google Scholar 

  • Takenaga K, Nygren J, Zelenina M et al (2007) Modified expression of Mts1/S100A4 protein in C6 glioma cells or surrounding astrocytes affects migration of tumor cells in vitro and in vivo. Neurobiol Dis 25:455–463

    CAS  PubMed  Google Scholar 

  • Tatenhorst L, Rescher U, Gerke V et al (2006) Knockdown of annexin 2 decreases migration of human glioma cells in vitro. Neuropathol Appl Neurobiol 32:271–277

    CAS  PubMed  Google Scholar 

  • Uchida H, Tanaka T, Sasaki K et al (2004) Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo. Mol Ther 10:162–171

    CAS  PubMed  Google Scholar 

  • Uht RM, Amos S, Martin PM et al (2007) The protein kinase C-eta isoform induces proliferation in glioblastoma cell lines through an ERK/Elk-1 pathway. Oncogene 26:2885–2893

    CAS  PubMed  Google Scholar 

  • Ulbricht U, Eckerich C, Fillbrandt R et al (2006) RNA interference targeting protein tyrosine phosphatase zeta/receptor-type protein tyrosine phosphatase beta suppresses glioblastoma growth in vitro and in vivo. J Neurochem 98:1497–1506

    CAS  PubMed  Google Scholar 

  • Virrey JJ, Guan S, Li W et al (2008) Increased survivin expression confers chemoresistance to tumor-associated endothelial cells. Am J Pathol 173:575–585

    CAS  PubMed  Google Scholar 

  • Vollmann A, Vornlocher HP, Stempfl T et al (2006) Effective silencing of EGFR with RNAi demonstrates non-EGFR dependent proliferation of glioma cells. Int J Oncol 28:1531–1542

    CAS  PubMed  Google Scholar 

  • Volpe TA, Kidner C, Hall IM et al (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837

    CAS  PubMed  Google Scholar 

  • Wang XH, Aliyari R, Li WX et al (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Science 312:452–454

    CAS  PubMed  Google Scholar 

  • Wei LC, Shi M, Cao R et al (2008) Nestin small interfering RNA (siRNA) reduces cell growth in cultured astrocytoma cells. Brain Res 1196:103–112

    CAS  PubMed  Google Scholar 

  • Wesolowska A, Kwiatkowska A, Slomnicki L et al (2008) Microglia-derived TGF-beta as an important regulator of glioblastoma invasion--an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Oncogene 27:918–930

    CAS  PubMed  Google Scholar 

  • Xia CF, Zhang Y, Boado RJ et al (2007) Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology. Pharm Res 24:2309–2316

    CAS  PubMed  Google Scholar 

  • Xie FY, Woodle MC, Lu PY (2006) Harnessing in vivo siRNA delivery for drug discovery and therapeutic development. Drug Discov Today 11:67–73

    CAS  PubMed  Google Scholar 

  • Yao XH, Ping YF, Chen JH et al (2008) Production of angiogenic factors by human glioblastoma cells following activation of the G-protein coupled formylpeptide receptor FPR. J Neurooncol 86:47–53

    CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang YF, Bryant J et al (2004) Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 10:3667–3677

    CAS  PubMed  Google Scholar 

  • Zhang J, Sarkar S, Yong VW (2005) The chemokine stromal cell derived factor-1 (CXCL12) promotes glioma invasiveness through MT2-matrix metalloproteinase. Carcinogenesis 26:2069–2077

    CAS  PubMed  Google Scholar 

  • Zhao P, Zhang YZ, Sun MZ (2005) [Regulatory effect of small interfering RNA targeting multidrug resistant protein 1 on chemosensitivity of human multiforme glioblastoma cell line BT325]. Ai Zheng 24:1436–1441

    CAS  PubMed  Google Scholar 

  • Zhao W, Kridel S, Thorburn A et al (2006) Fatty acid synthase: a novel target for antiglioma therapy. Br J Cancer 95:869–878

    CAS  PubMed  Google Scholar 

  • Zhao P, Wang C, Fu Z et al (2007) Lentiviral vector mediated siRNA knock-down of hTERT results in diminished capacity in invasiveness and in vivo growth of human glioma cells in a telomere length-independent manner. Int J Oncol 31:361–368

    CAS  PubMed  Google Scholar 

  • Zhao P, Zhang Y, Sun M et al (2008) Reversion of multidrug resistance in human glioma by RNA interference. Neurol Res 30:562–566

    CAS  PubMed  Google Scholar 

  • Zhen HN, Li LW, Zhang W et al (2007) Short hairpin RNA targeting survivin inhibits growth and angiogenesis of glioma U251 cells. Int J Oncol 31:1111–1117

    CAS  PubMed  Google Scholar 

  • Zheng X, Jiang F, Katakowski M et al (2007) Inhibition of ADAM17 reduces hypoxia-induced brain tumor cell invasiveness. Cancer Sci 98:674–684

    CAS  PubMed  Google Scholar 

  • Zhou Y, Bian X, Le Y et al (2005) Formylpeptide receptor FPR and the rapid growth of malignant human gliomas. J Natl Cancer Inst 97:823–835

    CAS  PubMed  Google Scholar 

  • Zhou Z, Yuan X, Li Z et al (2008) RNA interference targeting EphA2 inhibits proliferation, induces apoptosis, and cooperates with cytotoxic drugs in human glioma cells. Surg Neurol 70:562–568

    PubMed  Google Scholar 

  • Zukiel R, Nowak S, Wyszko E et al (2006) Suppression of human brain tumor with interference RNA specific for tenascin-C. Cancer Biol Ther 5:1002–1007

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research support for the corresponding author (S.P.M.) was provided by a grant from the National Cancer Institute/National Institute of Health (CA 116257), the Fund for Medical Research and Education (FMRE), Wayne State University, and a gift from the Marvin E. Klein, M.D., Charitable Trust. A.E.S. is supported by grants from the National Cancer Institute/National Institute of Health (KO8 101954) and the Case Western Reserve University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroj P. Mathupala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mathupala, S.P., Mittal, S., Guthikonda, M., Sloan, A.E. (2009). RNA Interference-Based Therapies Against Brain Tumors: Potential Clinical Strategies. In: Erdmann, V., Reifenberger, G., Barciszewski, J. (eds) Therapeutic Ribonucleic Acids in Brain Tumors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00475-9_14

Download citation

Publish with us

Policies and ethics