Skip to main content

Box 1: Stopping of Ions in Nanomaterials

  • Chapter
  • First Online:
Ion Beams in Nanoscience and Technology

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

  • 1352 Accesses

Abstract

The stopping of ions in solids is due to the energy loss as a result of the resistance to ion passage by the electrons and atomic nuclei in the material. When an ion penetrates a solid, it experiences a number of collisions. Energetic charged particles interact with both electrons and atoms in materials. Kinetic energy transfers to atoms can result in displacement of atoms from their original sites, thereby forming atomic-scale defects in the structure. Energy transfers to the target electrons (either bound or free) produce electron-hole pairs that can result in charging of pre-existing defects, localized electronic excitations, rupture of covalent and ionic bonds, enhanced defect and atomic diffusion, increased free energy, changes in phase transformation dynamics, as well as formation of atomic-scale defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Kunert, and R. Schmidt, Excitations and fragmentation mechanisms in ion–fullerene collisions, Phys. Rev. Lett. 86 (2001) 5258–5261.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. F. Banhart, and P. M. Ajayan, Carbon onions as nanoscopic pressure cells for diamond formation, Nature 382 (1996) 433–435.

    Article  CAS  ADS  Google Scholar 

  3. W. Mickelson, S. Aloni, W. Q. Han, J. Cumings, and A. Zettl, Packing C60 in boron nitride nanotubes, Science 300 (2003) 467–469.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. L. Sun, et al. Carbon nanotubes as high-pressure cylinders and nanoextruders, Science 312 (2006) 1199–1202.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. J. Lian, L. M. Wang, S. X. Wang, J. Chen, L. A. Boatner, and R. C. Ewing, Nanoscale manipulation of pyrochlore: New nanocomposite ionic conductors, Phys. Rev. Lett. 87 (2001) 145901.

    Article  CAS  PubMed  ADS  Google Scholar 

  6. J. Lian, W. Zhou, Q. M. Wei, and L. M. Wang, Simultaneous formation of surface ripples and metallic nanodots induced by phase decomposition and focused ion beam patterning, Appl. Phys. Lett. 88 (2006) 093112.

    Article  ADS  CAS  Google Scholar 

  7. U. Valbusa, C. Boragno, and F. B. de Mongeot, Nanostructuring surfaces by ion sputtering J. Phys. Condens. Matt. 14 (2002) 8153.

    Article  ADS  Google Scholar 

  8. C. Chappert, et al., Planar patterned magnetic media obtained by ion irradiation, Science 280 (1998) 1919–1922.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. H. Bernas, et al., Ordering intermetallic alloys by ion irradiation: A way to tailor magnetic media, Phys. Rev. Lett. 91 (2003) 077203.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. E. Akcöltekin, et al., Creation of multiple nanodots by single ions, Nat. Nanotechnol. 2 (2007) 290–294.

    Article  PubMed  ADS  CAS  Google Scholar 

  11. K. Kaneko, Y. Furuya, M. Kikuchi, High-temperature strength of TiC-coated SUS316 stainless steel Fusion Eng. Des. 19 (1992) 293.

    CAS  Google Scholar 

  12. E. H. Lee, A. F. Rowcliffe, and L. K. Mansur, Precipitation and cavity formation in stainless steels during irradiation, J. Nucl. Mater. 103 and 104 (1981) 1475.

    Article  Google Scholar 

  13. P. J. Maziasz, Void swelling resistance for PCA austenitic stainless steel under HFIR irradiation through microstructural control, J. Nucl. Mater. 200 (1993) 90.

    Article  CAS  ADS  Google Scholar 

  14. T. D. Shen, S. Feng, M. Tang, J. A. Valdez, Y. Wang, and K. E. Sickafusa, Enhanced radiation tolerance in nanocrystalline \(\mathrm{MgGa_{2}O_{4}}\), Appl. Phys. Lett. 90 (2007) 263115.

    Article  ADS  CAS  Google Scholar 

  15. T. Höchbauer, A. Misra, K. Hattar, and R. G. Hoagland, Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites J. Appl. Phys. 98 (2005) 123516.

    Article  ADS  CAS  Google Scholar 

  16. A. Misral, M. J. Demkowicz, X. Zhang, and R. G. Hoagland, The radiation damage tolerance of ultra-high strength nanolayered composites, JOM J. Miner. Metals Mater. Soc. 59 (2007) 62–65.

    Google Scholar 

  17. M. T. Robinson, Basic physics of radiation damage production J. Nucl. Mater. 216 (1994) 1.

    Article  CAS  ADS  Google Scholar 

  18. M. Samaras, W. Hoffelner, and M. Victoria, J. Nucl. Mater. 352 (2006) 50–56.

    Article  CAS  ADS  Google Scholar 

  19. A. Meldrum, L. A. Boatner, and R. C. Ewing, Nanocrystalline zirconia can be amorphized by ion irradiation Phys. Rev. Lett. 88 (2002) 025503.

    Article  CAS  PubMed  ADS  Google Scholar 

  20. A. Meldrum, L. A. Boatner, and R. C. Ewing, Size effects in the irradiation-induced crystalline-to-amorphous transformation Nucl. Instrum. Methods Phys. Res. B 207 (2003) 28–35.

    Article  CAS  ADS  Google Scholar 

  21. K. E. Sickafus, H. Matzke, T. Hartmann, K. Yasuda, J. A. Valdez, P. Chodak, M. Nastasi, and R. A. Verrall, Radiation damage effects in zirconia J. Nucl. Mater. 274 (1999) 66.

    Article  CAS  ADS  Google Scholar 

  22. I. A. Ovid’Ko and A. G. Sheinerman, Irradiation-induced amorphization processes in nanocrystalline solids Appl. Phys. A 81 (2005) 1083.

    Article  ADS  CAS  Google Scholar 

  23. S. Theppakuttai and S. Chen, Submicron ripple formation on glass surface upon laser-nanosphere interaction, J. Appl. Phys. 95 (2004) 5049.

    Article  CAS  ADS  Google Scholar 

  24. W. J. Weber, R. C. Ewing, C. R. A. Catlow, T. Diaz de la Rubia, L. W. Hobbs, C. Kinoshita, H. J. Matzke, A. T. Motta, M. Nastasi, E. K. H. Salje, E. R. Vance, and S. J. Zinkle, Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium J. Mater. Res. 13 (1998) 1434.

    Article  CAS  ADS  Google Scholar 

  25. K. E. Sickafus, L. Minervini, R. W. Grimes, J. A. Valdez, M. Ishimaru, F. Li, K. J. McClellan, T. Hartmann, Radiation tolerance of complex oxides Science 289 (2000) 748.

    CAS  Google Scholar 

  26. Y. Zhang, W. J. Weber, V. Shutthanandan, R. Devanathan, S. Thevuthasan, G. Balakrishnan, D. M. Paul, Damage evolution on Sm and O sublattices in Au-implanted samarium titanate pyrochlore J. Appl. Phys. 95 (2004) 2866.

    Article  CAS  ADS  Google Scholar 

  27. Y. Zhang, W. J. Weber, W. Jiang, A. Hallén, and G. Possnert, Damage evolution and recovery on both Si and C sublattices in Al-implanted 4H-SiC studied by Rutherford backscattering spectroscopy and nuclear reaction analysis J. Appl. Phys. 91 (2002) 6388.

    Article  CAS  ADS  Google Scholar 

  28. Y. Zhang, J. Lian, C. M. Wang, W. Jiang, R. C. Ewing, and W. J. Weber, Ion-induced damage accumulation and electron-beam-enhanced recrystallization in SrTiO3 Phys. Rev. B 72 (2005) 094112.

    Article  ADS  CAS  Google Scholar 

  29. I.-T. Bae, Y. Zhang, W. J. Weber, M. Higuchi, and L. A. Giannuzzi, Electron-beam induced recrystallization in amorphous apatite Appl. Phys. Lett. 90 (2007) 021912.

    Article  ADS  CAS  Google Scholar 

  30. H. Inui, H. Mori, T. Sakata, H. Fujita, Electron irradiation induced crystalline-to-amorphous transition in quartz single crystals. J Non-Cryst Solids 116 (1990) 1.

    Article  CAS  ADS  Google Scholar 

  31. L. W. Hobbs and M. R. Pascucci, Radiolysis and defect structure in electron-irradiated α-quartz J. Phys. 41 (1980) C6-237.

    Google Scholar 

  32. W. L. Gong, L. M. Wang, R. C. Ewing, and J. Zhang, Electron-irradiation- and ion-beam-induced amorphization of coesite Phys. Rev. B 54 (1996) 3800.

    Article  CAS  ADS  Google Scholar 

  33. Y. Zhang, In-Tae, Bae, W. J. Weber, Atomic collision and ionization effects in oxides, Nucl. Inst. Methods Phys. Res., B 266 (2008) 2828.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwen Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Y., Weber, W.J. (2009). Box 1: Stopping of Ions in Nanomaterials. In: Hellborg, R., Whitlow, H., Zhang, Y. (eds) Ion Beams in Nanoscience and Technology. Particle Acceleration and Detection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00623-4_5

Download citation

Publish with us

Policies and ethics