Skip to main content

Behavior Design of a Human-Interactive Robot through Parallel Tasks Optimization

  • Chapter
Distributed Autonomous Robotic Systems 8
  • 1713 Accesses

Abstract

Robots that interact with humans are required to achieve multiple simultaneous tasks such as carrying objects, collision avoidance and conversation with human, in real time. This paper presents a design framework of the control and the recognition processes to meet the requirement by considering stochastic behavior of humans. The proposed designing method first introduces petri-net. The petri-net formulation is converted to Markov decision processes and dealt with in optimal control framework. Two tasks of safety confirmation and conversation tasks are implemented. Tasks that normally tend to be designed by integrating many if-then rules can be dealt with in a systematic manner in the proposed framework. The proposed method was verified by simulations and experiments using RI-MAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kanda, T., Hirano, T., Eaton, D., Ishiguro, H.: Interactive robots as social partners and peer tutors for children: A field trial. Human Computer Interaction 19(1-2), 61–84 (2004)

    Article  Google Scholar 

  2. Shiomi, M., Kanda, T., Ishiguro, H., Hagita, N.: Interactive humanoid robots for a science museum. IEEE Intelligent Systems 22(2), 25–32 (2007)

    Article  Google Scholar 

  3. Kim, G., Chung, W., Park, S., Kim, M.: Experimental research of navigation behavior selection using generalized stochastic petri nets for a tour-guide robot. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (2005)

    Google Scholar 

  4. Bazewicz, J.: Scheduling computer and manufacturing processes. Springer, Heidelberg (1996)

    Google Scholar 

  5. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation RA-2, 253–262 (1986)

    Google Scholar 

  6. Connell, J.H.: Sss: A hybrid architecture applied to robot navigation. In: Proc. of the 1992 IEEE Conf. on Robotics and Automation, pp. 2719–2724 (1992)

    Google Scholar 

  7. Lehmann, A., Mikut, R., Asfour, T.: Petri nets for task supervision in humanoid robots. In: Proc. 37th International Symposium on Robotics, pp. 71–73 (2006)

    Google Scholar 

  8. Kobayashi, K., Nakatani, A., Takahashi, H., Ushio, T.: Motion planning for humanoid robots using timed petri net and modular state net. In: Proc. of the 2002 Int. Conf. on Systems, Man & Cybernetics, pp. 334–339 (2002)

    Google Scholar 

  9. Haas, P.J.: Stochastic Petri Nets. Springer Series in Operations Research (2002)

    Google Scholar 

  10. Odashima, T., et al.: A soft human-interactive robot ri-man. In: Video Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (2006)

    Google Scholar 

  11. Ramage, P.J.G., Wonham, W.M.: The control of discrete event system. Proc. IEEE 77(1), 81–98 (1989)

    Article  Google Scholar 

  12. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  13. Bertsekas, D.: Dynamic Programming and Optimal Control. Athena Scientific (2005)

    Google Scholar 

  14. Elfes, A.: Using Occupancy Grids for Mobile Robot Perception and Navigation. Computer 22(6), 46–57 (1989)

    Article  Google Scholar 

  15. Stepan, P., Kulich, M., Preucil, L.: Robust data fusion with occupancy grid. IEEE Trans. on Systems, Man, and Cybernetics Part C 35, 1 (2005)

    Google Scholar 

  16. Nakashima, H., Ohnishi, N., Mukai, T.: Self-Organization of a Sound Source Localization Robot by Perceptual Cycle. In: 9th Int. Conf. on Neural Information Processing, vol. 2, pp. 834–838 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kobayashi, Y., Onishi, M., Hosoe, S., Luo, Z. (2009). Behavior Design of a Human-Interactive Robot through Parallel Tasks Optimization. In: Asama, H., Kurokawa, H., Ota, J., Sekiyama, K. (eds) Distributed Autonomous Robotic Systems 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00644-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00644-9_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00643-2

  • Online ISBN: 978-3-642-00644-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics