Skip to main content

Effect of Plasma Environment on Synthesis of Vertically Aligned Carbon Nanofibers in Plasma-Enhanced Chemical Vapor Deposition

  • Chapter
  • First Online:
Nanoscale Phenomena

Part of the book series: NanoScience and Technology ((NANO))

  • 910 Accesses

Abstract

We present a theoretical model describing a plasma-assisted growth of carbon nanofibers (CNFs), which involves two competing channels of carbon incorporation into stacked graphene sheets: via surface diffusion and through the bulk of the catalyst particle (on the top of the nanofiber), accounting for a range of ion- and radical-assisted processes on the catalyst surface. Using this model, it is found that at low surface temperatures, T s, the CNF growth is indeed controlled by surface diffusion, thus quantifying the semiempirical conclusions of earlier experiments. On the other hand, both the surface and bulk diffusion channels provide a comparable supply of carbon atoms to the stacked graphene sheets at elevated synthesis temperatures. It is also shown that at low T s, insufficient for effective catalytic precursor decomposition, the plasma ions play a key role in the production of carbon atoms on the catalyst surface. The model is used to compute the growth rates for the two extreme cases of thermal and plasma-enhanced chemical vapor deposition of CNFs. More importantly, these results quantify and explain a number of observations and semiempirical conclusions of earlier experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Grobert, Mater. Tod. 10, 28 (2007)

    Article  CAS  Google Scholar 

  2. A.V. Melechko, V.I. Merkulov, T.E. McKnight, M.A. Guillorn, K.L. Klein, D.H. Lowndes, M.L. Simpson, J. Appl. Phys. 97, 041301 (2005)

    Article  ADS  CAS  Google Scholar 

  3. S.G. Rao, L. Huang, W. Setyawan, S. Hong, Nature 425, 36 (2003)

    Article  PubMed  ADS  CAS  Google Scholar 

  4. M. Meyyappan, L. Delzeit, A. Cassell, D. Hash, Plasma Sources Sci. Technol. 12, 205 (2003)

    Article  ADS  CAS  Google Scholar 

  5. I.B. Denysenko, S. Xu, J.D. Long, P.P. Rutkevych, N.A. Azarenkov, K. Ostrikov, J. Appl. Phys. 95, 2713 (2004)

    Article  ADS  CAS  Google Scholar 

  6. J.C. Charlier, A. DeVita, X. Blase, R. Car, Science 275, 646 (1997)

    Article  PubMed  CAS  Google Scholar 

  7. A.N. Andriotis, M. Menon, G. Froudakis, Phys. Rev. Lett. 85, 3193 (2000)

    Article  PubMed  ADS  CAS  Google Scholar 

  8. X. Fan, R. Buczko, A.A. Puretzky, D.B. Geohegan, J.Y. Howe, S.T. Pantelides, S. J. Pennycook, Phys. Rev. Lett. 90, 145501 (2003)

    Article  PubMed  ADS  CAS  Google Scholar 

  9. C. Klinke, J.-M. Bonard, K. Kern, Phys. Rev. B 71, 035403 (2005)

    Article  ADS  CAS  Google Scholar 

  10. S. Hofmann, G. Czanyi, A.C. Ferrari, M.C. Payne, J. Robertson, Phys. Rev. Let. 95, 036101 (2005)

    Article  ADS  CAS  Google Scholar 

  11. S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Appl. Phys. Lett. 83, 135 (2003)

    Article  ADS  CAS  Google Scholar 

  12. C. Ducati, I. Alexandrou, M. Chowalla, G.A.J. Amaratunga, J. Robertson, J. Appl. Phys. 92, 3299 (2002)

    Article  ADS  CAS  Google Scholar 

  13. M. Tanemura, K. Iwata, K. Takahashi, Y. Fujimoto, F. Okuyama, H. Sugie, V. Filip, J. Appl. Phys. 90, 1529 (2001)

    Article  ADS  CAS  Google Scholar 

  14. O.A. Louchev, T. Laude, Y. Sato, H. Kanda, J. Chem. Phys. 118, 7622 (2003)

    Article  ADS  CAS  Google Scholar 

  15. O.A. Louchev, C. Dussarrat, Y. Sato, J. Appl. Phys. 86, 1736 (1999)

    Article  ADS  CAS  Google Scholar 

  16. N.V. Mantzaris, E. Gogolides, A.G. Boudouvis, A. Rhallabi, G. Turban, J. Appl. Phys. 79, 3718 (1996)

    Article  ADS  Google Scholar 

  17. K.B.K. Teo et al., Nano Lett. 4, 921 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Denysenko, I., Ostrikov, K., Azarenkov, N.A., Yu, M.Y. (2009). Effect of Plasma Environment on Synthesis of Vertically Aligned Carbon Nanofibers in Plasma-Enhanced Chemical Vapor Deposition. In: Hahn, H., Sidorenko, A., Tiginyanu, I. (eds) Nanoscale Phenomena. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00708-8_10

Download citation

Publish with us

Policies and ethics