Skip to main content

Large-Scale Analyses of Positive Selection Using Codon Models

  • Chapter
  • First Online:
Evolutionary Biology

Abstract

Positive selection is the mechanism of adaptation to the environment, as well as the main source of novelty in evolution and thus it is of great interest to find its trace in genomes. During the last decade, different evolutionary models have been developed to detect positive selection at the gene level, based on divergence between species. Most recently, these models have been applied to large-scale comparisons of genomes. We present in this chapter some strengths and limitations of such genomic scans for positive selection and discuss the main recent large-scale studies, as well as relevant databases. We particularly discuss our recent results concerning the impact of genome duplication in vertebrate evolution and our related database Selectome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anisimova M, Bielawski JP, et al (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18(8):1585–1592

    CAS  PubMed  Google Scholar 

  • Anisimova M, Bielawski JP, et al (2002) Accuracy and power of bayes prediction of amino acid sites under positive selection. Mol Biol Evol 19(6):950–958

    CAS  PubMed  Google Scholar 

  • Anisimova M, Liberles DA (2007) The quest for natural selection in the age of comparative genomics. Heredity 99(6):567–579

    Article  CAS  PubMed  Google Scholar 

  • Anisimova M, Yang Z (2007) Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. Mol Biol Evol 24(5):1219–1228

    Article  CAS  PubMed  Google Scholar 

  • Arbiza L, Dopazo J, et al (2006) Positive selection, relaxation, and acceleration in the evolution of the human and chimp genome. PLoS Comput Biol 2(4):e38

    Article  PubMed  Google Scholar 

  • Avaron F, Thaeron-Antono C, et al (2003) Comparison of even-skipped related gene expression pattern in vertebrates shows an association between expression domain loss and modification of selective constraints on sequences. Evol Dev 5(2):145–156

    Article  CAS  PubMed  Google Scholar 

  • Bakewell MA, Shi P, et al (2007) More genes underwent positive selection in chimpanzee evolution than in human evolution. Proc Natl Acad Sci USA 104(18):7489–7494

    Article  CAS  PubMed  Google Scholar 

  • Baum J, Ward RH, et al (2002) Natural selection on the erythrocyte surface. Mol Biol Evol 19(3):223–229

    CAS  PubMed  Google Scholar 

  • Bielawski JP, Yang Z (2003) Maximum likelihood methods for detecting adaptive evolution after gene duplication. J Struct Funct Genomics 3(1–4):201–212

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Akey JM (2006) Genomic insights into positive selection. Trends Genet 22(8):437–446

    Article  CAS  PubMed  Google Scholar 

  • Brunet FG, Crollius HR, et al (2006) Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Mol Biol Evol 23(9):1808–1816

    Article  CAS  PubMed  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552

    CAS  PubMed  Google Scholar 

  • Christin PA, Salamin N, et al (2008) Evolutionary switch and genetic convergence on rbcL following the evolution of C4 photosynthesis. Mol Biol Evol 25(11):2361–2368

    Article  CAS  PubMed  Google Scholar 

  • Clamp M, Cuff J, et al (2004) The Jalview Java alignment editor. Bioinformatics 20(3):426–427

    Article  CAS  PubMed  Google Scholar 

  • Clark AG, Glanowski S, et al (2003) Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science 302(5652):1960–1963

    Article  CAS  PubMed  Google Scholar 

  • Conant GC, Wolfe KH (2008) Turning a hobby into a job: How duplicated genes find new functions. Nat Rev Genet 9(12):938–950

    Article  CAS  PubMed  Google Scholar 

  • Dufayard JF, Duret L, et al (2005) Tree pattern matching in phylogenetic trees: automatic search for orthologs or paralogs in homologous gene sequence databases. Bioinformatics 21(11):2596–2603

    Article  CAS  PubMed  Google Scholar 

  • Duret L, Mouchiroud D, et al (1994) HOVERGEN: a database of homologous vertebrate genes. Nucleic Acids Res 22(12):2360–2365

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Ikeo K, et al (1996) Large-scale search for genes on which positive selection may operate. Mol Biol Evol 13(5):685–690

    CAS  PubMed  Google Scholar 

  • Eyre-Walker A (2006) The genomic rate of adaptive evolution. Trends Ecol Evol 21(10):569–575

    Article  PubMed  Google Scholar 

  • Force A, Lynch M, et al (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151(4):1531–1545

    CAS  PubMed  Google Scholar 

  • Gillespie JH (1991) The causes of molecular evolution. Oxford University Press, New York

    Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704

    Article  PubMed  Google Scholar 

  • Hamosh A, Scott AF, et al (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucl Acids Res 33(Suppl_1):D514–517

    CAS  PubMed  Google Scholar 

  • He X, Zhang J (2005) Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 169(2):1157–1164

    Article  PubMed  Google Scholar 

  • Hughes AL, Hughes MK, et al (1994) Natural selection at the class II major histocompatibility complex loci of mammals. Philos Trans R Soc Lond B Biol Sci 346(1317):359–366; discussion 366–367

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335(6186):167–170

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL, Nei M (1989) Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci USA 86(3):958–962

    Article  CAS  PubMed  Google Scholar 

  • Jaillon O, Aury JM, et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431(7011):946–957

    Article  PubMed  Google Scholar 

  • Jiggins FM, Hurst GD, et al (2002) Host-symbiont conflicts: positive selection on an outer membrane protein of parasitic but not mutualistic Rickettsiaceae. Mol Biol Evol 19(8):1341–1349

    CAS  PubMed  Google Scholar 

  • Jorgensen FG, Hobolth A, et al (2005) Comparative analysis of protein coding sequences from human, mouse and the domesticated pig. BMC Biol 3:2

    Article  PubMed  Google Scholar 

  • Katoh K, Kuma K, et al (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33(2):511–518

    Article  CAS  PubMed  Google Scholar 

  • King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188(4184):107–116

    Article  CAS  PubMed  Google Scholar 

  • Kondrashov FA, Kondrashov AS (2006) Role of selection in fixation of gene duplications. J Theor Biol 239(2):141–151

    Article  CAS  PubMed  Google Scholar 

  • Kosiol C, Vinar T, et al (2008) Patterns of positive selection in six Mammalian genomes. PLoS Genet 4(8):e1000144

    Article  PubMed  Google Scholar 

  • Kuzniar A, van Ham RC, et al (2008) The quest for orthologs: finding the corresponding gene across genomes. Trends Genet 24(11):539–551

    Article  CAS  PubMed  Google Scholar 

  • Landan G, Graur D (2007) Heads or tails: a simple reliability check for multiple sequence alignments. Mol Biol Evol 24(6):1380–1383

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Ota T, et al (1995) Positive selection is a general phenomenon in the evolution of abalone sperm lysin. Mol Biol Evol 12(2):231–238

    CAS  PubMed  Google Scholar 

  • Mayrose I, Doron-Faigenboim A, et al (2007) Towards realistic codon models: among site variability and dependency of synonymous and non-synonymous rates. Bioinformatics 23(13):i319–327

    Article  CAS  PubMed  Google Scholar 

  • Messier W, Stewart CB (1997) Episodic adaptive evolution of primate lysozymes. Nature 385(6612):151–154

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Estrada A, Casals F, et al (2008) Signatures of selection in the human olfactory receptor OR5I1 gene. Mol Biol Evol 25(1):144–154

    Article  CAS  PubMed  Google Scholar 

  • Nickel GC, Tefft D, et al (2008) Human PAML browser: a database of positive selection on human genes using phylogenetic methods. Nucleic Acids Res 36(Database issue):D800–D808

    CAS  PubMed  Google Scholar 

  • Nielsen R, Bustamante C, et al (2005) A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 3(6):e170

    Article  PubMed  Google Scholar 

  • Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148(3):929–936

    CAS  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Google Scholar 

  • Perriere G, Duret L, et al (2000) HOBACGEN: database system for comparative genomics in bacteria. Genome Res 10(3):379–385

    Article  CAS  PubMed  Google Scholar 

  • Petersen L, Bollback JP, et al (2007) Genes under positive selection in Escherichia coli. Genome Res 17(9):1336–1343

    Article  CAS  PubMed  Google Scholar 

  • Proux E, Studer RA, et al (2008) Selectome: a database of positive selection. Nucleic Acids Res 37:D404–D407

    Article  PubMed  Google Scholar 

  • Putnam NH, Butts T, et al (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453(7198):1064–1071

    Article  CAS  PubMed  Google Scholar 

  • Robinson-Rechavi M, Huchon D (2000) RRTree: Relative-Rate Tests between groups of sequences on a phylogenetic tree. Bioinformatics 16(3):296–297

    Article  CAS  PubMed  Google Scholar 

  • Rooney AP, Zhang J (1999) Rapid evolution of a primate sperm protein: relaxation of functional constraint or positive Darwinian selection? Mol Biol Evol 16(5):706–710

    CAS  PubMed  Google Scholar 

  • Roth C, Betts MJ, et al (2005) The Adaptive Evolution Database (TAED): a phylogeny based tool for comparative genomics. Nucleic Acids Res 33(Database issue):D495–D497

    Article  CAS  PubMed  Google Scholar 

  • Ruan J, Li H, et al (2008) TreeFam: 2008 Update. Nucleic Acids Res 36(Database issue):D735–D740

    CAS  PubMed  Google Scholar 

  • Sawyer SL, Wu LI, et al (2005) Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci USA 102(8):2832–2837

    Article  CAS  PubMed  Google Scholar 

  • Schmid K, Yang Z (2008) The trouble with sliding windows and the selective pressure in BRCA1. PLoS ONE 3(11):e3746

    Article  PubMed  Google Scholar 

  • Semon M, Wolfe KH (2007) Consequences of genome duplication. Curr Opin Genet Dev 17(6):505–512

    Article  CAS  PubMed  Google Scholar 

  • Shiu SH, Byrnes JK, et al (2006) Role of positive selection in the retention of duplicate genes in mammalian genomes. Proc Natl Acad Sci USA 103(7):2232–2236

    Article  CAS  PubMed  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100(16):9440–9445

    Article  CAS  PubMed  Google Scholar 

  • Studer RA, Penel S, et al (2008) Pervasive positive selection on duplicated and nonduplicated vertebrate protein coding genes. Genome Res 18(9):1393–1402

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y (2008) False-positive results obtained from the branch-site test of positive selection. Genes Genet Syst 83(4):331–338

    Article  PubMed  Google Scholar 

  • Vamathevan JJ, Hasan S, et al (2008) The role of positive selection in determining the molecular cause of species differences in disease. BMC Evol Biol 8:273

    Article  PubMed  Google Scholar 

  • Wong KM, Suchard MA, et al (2008) Alignment uncertainty and genomic analysis. Science 319(5862):473–476

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13(5):555–556

    CAS  PubMed  Google Scholar 

  • Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15(5):568–573

    CAS  PubMed  Google Scholar 

  • Yang Z (2006) Computational molecular evolution. Oxford University Press, New York

    Book  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19(6):908–917

    CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R (2008) Mutation-selection models of codon substitution and their use to estimate selective strengths on codon usage. Mol Biol Evol 25(3):568–579

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R, et al (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155(1):431–449

    CAS  PubMed  Google Scholar 

  • Yang Z, Swanson WJ (2002) Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Mol Biol Evol 19(1):49–57

    PubMed  Google Scholar 

  • Yang Z, Swanson WJ, et al (2000) Maximum-likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites. Mol Biol Evol 17(10):1446–1455

    CAS  PubMed  Google Scholar 

  • Yang Z, Wong WS, et al (2005) Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22(4):1107–1118

    Article  CAS  PubMed  Google Scholar 

  • Zhang J (2004) Frequent false detection of positive selection by the likelihood method with branch-site models. Mol Biol Evol 21(7):1332–1339

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Nielsen R, et al (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22(12):2472–2479

    Article  CAS  PubMed  Google Scholar 

  • Zhang JZ (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18(6):292–298

    Article  Google Scholar 

  • Zhang ZD, Weinstock G, et al (2008) Rapid evolution by positive Darwinian selection in T-cell antigen CD4 in primates. J Mol Evol 66(5):446–456

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Robinson-Rechavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Studer, R.A., Robinson-Rechavi, M. (2009). Large-Scale Analyses of Positive Selection Using Codon Models. In: Pontarotti, P. (eds) Evolutionary Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00952-5_13

Download citation

Publish with us

Policies and ethics