Skip to main content

Structural Trends in Network Ensembles

  • Chapter
Complex Networks

Part of the book series: Studies in Computational Intelligence ((SCI,volume 207))

Abstract

A collection of networks is considered a network ensemble if its members originate from a common natural or technical process such as repeated measurements, replication and mutation, or massive parallelism, possibly under varying conditions. We propose a spectral approach to identify structural trends, i. e. prevalent patterns of connectivity, in an ensemble by delineating classes of networks with similar role structure. Formal, experimental, and practical evidence of its potential is given.

Research supported in part by DFG under grant GK 1024 (Research Training Group “Explorative Analysis and Visualization of Large Information Spaces”)and University of Konstanz under grant FP 626/08.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Krivelevich, M., Vu, V.H.: On the concentration of eigenvalues of random symmetric matrices. Israel Journal of Mathematics 131(1), 259–267 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bianconi, G.: The entropy of randomized network ensembles. Europhysics Letters 81, 28005 (2008)

    Article  MathSciNet  Google Scholar 

  3. Borgatti, S.P., Everett, M.G.: Notions of position in social network analysis. Sociological Methodology 22, 1–35 (1992)

    Article  Google Scholar 

  4. Brandes, U., Erlebach, T. (eds.): Network Analysis. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  5. Brandes, U., Kenis, P., Lerner, J., van Raaij, D.: Network analysis of collaboration structure in Wikipedia. In: Proc. 18th Intl. World Wide Web Conf. (WWW 2009) (to appear, 2009)

    Google Scholar 

  6. Brandes, U., Lerner, J., Lubbers, M.J., McCarty, C., Molina, J.L.: Visual statistics for collections of clustered graphs. In: Proc. IEEE Pacific Visualization Symp (PacificVis 2008), pp. 47–54 (2008)

    Google Scholar 

  7. Butts, C.T., Carley, K.M.: Some simple algorithms for structural comparison. Computational & Mathematical Organization Theory 11(4), 291–305 (2005)

    Article  MATH  Google Scholar 

  8. Carley, K.M., Lee, J.-S., Krackhardt, D.: Destabilizing networks. Connections 24(3), 79–92 (2002)

    Google Scholar 

  9. Faust, K.: Comparing social networks: Size, density, and local structure. Metodološki zvezki 3(2), 185–216 (2006)

    Google Scholar 

  10. Faust, K., Skvoretz, J.: Comparing networks across space and time, size and species. Sociological Methodology 32(1), 267–299 (2002)

    Article  Google Scholar 

  11. Fiala, J., Paulusma, D.: The computational complexity of the role assignment problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 817–828. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Golub, B., Jackson, M.O.: How homophily affects communication in networks (2008), http://arxiv.org/abs/0811.4013

  13. Leicht, E.A., Holme, P., Newman, M.E.J.: Vertex similarity in networks. Physical Review E 73 (2006)

    Google Scholar 

  14. Lerner, J.: Role assignments. In: Brandes and Erlebach [4], pp. 216–252

    Google Scholar 

  15. McSherry, F.: Spectral partitioning of random graphs. In: Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2001), pp. 529–537 (2001)

    Google Scholar 

  16. Stewart, G.W., Sun, J.-G.: Matrix Perturbation Theory. Academic Press, London (1990)

    MATH  Google Scholar 

  17. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  18. Welser, H.T., Gleave, E., Fisher, D., Smith, M.: Visualizing the signatures of social roles in online discussion groups. Journal of Social Structure 8 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brandes, U., Lerner, J., Nagel, U., Nick, B. (2009). Structural Trends in Network Ensembles. In: Fortunato, S., Mangioni, G., Menezes, R., Nicosia, V. (eds) Complex Networks. Studies in Computational Intelligence, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01206-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01206-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01205-1

  • Online ISBN: 978-3-642-01206-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics