Skip to main content

Emergence of Scale-Free Syntax Networks

  • Chapter
  • First Online:
Evolution of Communication and Language in Embodied Agents

Abstract

The evolution of human language allowed the efficient propagation of nongenetic information, thus creating a new form of evolutionary change. Language development in children offers the opportunity of exploring the emergence of such complex communication system and provides a window to understanding the transition from protolanguage to language. Here we present the first analysis of the emergence of syntax in terms of complex networks. A previously unreported, sharp transition is shown to occur around two years of age from a (pre-syntactic) tree-like structure to a scale-free, small world syntax network. The observed combinatorial patterns provide valuable data to understand the nature of the cognitive processes involved in the acquisition of syntax, introducing a new ingredient to understand the possible biological endowment of human beings which results in the emergence of complex language. We explore this problem by using a minimal, data-driven model that is able to capture several statistical traits, but some key features related to the emergence of syntactic complexity display important divergences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509.

    Article  MathSciNet  Google Scholar 

  • Bickerton, D. (1990). Language and species. Chicago: University of Chicago Press.

    Google Scholar 

  • Bloom, L., Hood, L., & Lightbown, P. (1974). Imitation in language development if when and why. Cognitive Psychology, 6, 380–420.

    Article  Google Scholar 

  • Bloom, L., Lightbown, P., & Hood, L. (1975). Structure and variation in child language. Monographs of the Society for Research in Child Development, 160(40).

    Google Scholar 

  • Bollobás, B. (2001). Random graphs. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Chomsky, N. (1957) Syntactic structures. The Hague: Mouton & Co.

    Google Scholar 

  • Chomsky, N. (1988). Language and problems of knowledge. Cambridge: MIT Press.

    Google Scholar 

  • Christiansen, M. H., & Kirby, S. (2003). Language evolution: consensus and controversies. Trends in Cognitive Sciences, 7(7), 300–307.

    Article  Google Scholar 

  • Corominas-Murtra, B. (2007). Network statistics on early English syntax: structural criteria. arXiv:0704.3708.

  • Deacon, T. W. (1997). The symbolic species: the co-evolution of language and the brain. New York: Norton.

    Google Scholar 

  • Dennet, D. C. (1995). Darwin’s dangerous idea. London: Penguin.

    Google Scholar 

  • Dorogovtsev, S. N., & Mendes, J. F. F. (2001). Language as an evolving word web. Proceedings of the Royal Society London. Series B, Biological Sciences, 268.

    Google Scholar 

  • Dorogovtsev, S. N., & Mendes, J. F. F. (2003). Evolution of networks. New York: Oxford University Press.

    Book  MATH  Google Scholar 

  • Elman, J. L. (1993). Learning and development in neural networks: the importance of starting small. Cognition, 48(1), 71–99.

    Article  Google Scholar 

  • Erdös, P., & Rényi, A. (1959). On random graphs. Publicationes Mathemticae (Debrecen), 6, 290–297.

    MATH  Google Scholar 

  • Ferrer-i-Cancho, R., & Solé, R. V. (2001). The small world of human language. Proceedings of the Royal Society London. Series B, Biological Sciences, 268.

    Google Scholar 

  • Ferrer-i-Cancho, R., & Solé, R. V. (2003). Least effort and the origins of scaling in human language. Proceedings of the National Academy of Sciences of the United States of America, 100, 788–791.

    Article  MATH  MathSciNet  Google Scholar 

  • Ferrer-i-Cancho, R., Köhler, R., & Solé, R. V. (2004). Patterns in syntactic dependency networks. Physical Revue E, 69, 051915.

    Article  Google Scholar 

  • Ferrer-i-Cancho, R., Riordan, O., & Bollobás, B. (2005). The consequences of Zipf’s law for syntax and symbolic reference. Proceedings of The Royal Society of London. Series B, Biological Sciences.

    Google Scholar 

  • Gould, S. J. (2002). The structure of evolutionary theory. Cambridge: Harvard University Press.

    Google Scholar 

  • Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proceedings of The Royal Society of London. Series B, Biological Sciences, 205, 581–598.

    Article  Google Scholar 

  • Harremoës, P., & Topsoe, F. (2001). Maximum entropy fundamentals. Entropy, 3(3), 191–226.

    Article  MathSciNet  Google Scholar 

  • Hauser, M. D., Chomsky, N., & Fitch, T. W. (2002). The faculty of language: what is it, who has it, and how did it evolve? Science, 298, 1569–1579.

    Article  Google Scholar 

  • Holland, P. W., & Leinhardt, S. (1970). A method for detecting structure in sociometric data. American Journal of Sociology, 70, 492–513.

    Article  Google Scholar 

  • Hudson, R. (2006). Language networks: the new word grammar. New York: Oxford University Press.

    Google Scholar 

  • Humboldt, W. V. (1999). On language: the diversity of human language construction and its influence on the mental development of the human species (2nd ed.). Cambridge: Cambridge University Press. Lomansky M. (trans.), Heath, P.L. (Eds.).

    Google Scholar 

  • Hurford, J. (1989). Biological evolution of the Saussurean sign as a component of the language acquisition device. Lingua, 77(2), 187–222.

    Article  Google Scholar 

  • Kauffman, S. A. (1993). The origins of order: self-organization and selection in evolution. London: Oxford University Press.

    Google Scholar 

  • Ke, J. (2007). Complex networks and human language. arXiv:cs/0701135.

  • Komarova, N. L., & Niyogi, P. (2004). Optimizing the mutual intelligibility of linguistic agents in a shared world. Artificial Intelligence, 154(1–2), 1–42.

    Article  MATH  MathSciNet  Google Scholar 

  • Komarova, N., Niyogi, P., & Nowak, M. (2001). The evolutionary dynamics of grammar acquisition. Journal of Theoretical Biology, 209(1), 43–59.

    Article  Google Scholar 

  • Macwhinney, B. (2000). The CHILDES project: tools for analyzing talk (3rd ed.). Mahwah: Erlbaum.

    Google Scholar 

  • Macwhinney, B. (2005). The emergence of linguistic form in time. Connection Science, 17(3), 191–211.

    Article  Google Scholar 

  • Maynard-Smith, J., & Szathmàry, E. (1997). The major transitions in evolution. New York: University of New York Press.

    Google Scholar 

  • Melçuck, I. (1989). Dependency grammar: theory and practice. New York: Oxford University Press.

    Google Scholar 

  • Miller, G. A., & Chomsky, N. (1963). Finitary models of language users. In R. D. Luce, R. Bush, & E. Galanter (Eds.), Handbook of Mathematical Psychology (pp. 419–491, vol. 2). New York: Wiley.

    Google Scholar 

  • Newman, M. E. J. (2002). Assortative mixing in networks. Physical Revue Letters, 89, 208701.

    Article  Google Scholar 

  • Newport, E. L. (1990). Maturational constraints on language learning. Cognitive Science, 14(1), 11–28.

    Article  Google Scholar 

  • Niyogi, P. (2006). The computational nature of language learning and evolution. Cambridge: MIT Press.

    Google Scholar 

  • Nowak, M. A., & Krakauer, D. (1999). The evolution of language. Proceedings of the National Academy of Sciences of the United States of America, 96(14), 8028–8033.

    Article  Google Scholar 

  • Oudeyer, P.-Y. (2006). Self-organization in the evolution of speech studies in the evolution of language. London: Oxford University Press.

    Book  Google Scholar 

  • Pinker, S. (1994). The language instinct. London: Penguin.

    Google Scholar 

  • Pinker, S., & Bloom, P. (1990). Natural language and natural selection. Behavioral and Brain Sciences, 13, 707–786.

    Google Scholar 

  • Radford, A. (1990). Syntactic theory and the acquisition of English syntax: the nature of early child grammars of English. Oxford: Blackwell.

    Google Scholar 

  • Sigman, M., & Cecchi, G. (2002). Global organization of the wordnet lexicon. Proc. Nat. Acad. Sci. USA, 99(3), 1742–1747.

    Article  Google Scholar 

  • Solé, R., & Goodwin, B. (2001). Signs of life: how complexity pervades biology. New York: Basic Books.

    Google Scholar 

  • Solé, R. V. (2005). Syntax for free? Nature, 434, 289.

    Article  Google Scholar 

  • Solé, R. V., & Valverde, S. (2006). Are network motifs the spandrels of cellular complexity? Trends in Ecology & Evolution, 21(8), 419–422.

    Article  Google Scholar 

  • Steels, L. (1997). The synthetic modelling of language origins. Evolution of Communication, 1(1), 1–34.

    Article  Google Scholar 

  • Steyvers, M., & Tenenbaum, J. B. (2005). The large-scale structure of semantic networks: statistical analyses and a model of semantic growth. Cognitive Science, 29, 41–78.

    Article  Google Scholar 

  • Szamadó, S., & Szathmàry, E. (2006). Selective scenarios for the emergence of natural language. Trends in Ecology and Evolution, 21(10), 555–561.

    Article  Google Scholar 

  • Szathmáry, E., Szatmáry, Z., Ittzés, P., Orbán, G., Zachár, I., Huszár, F., Fedor, A., Varga, M., & Számadó, S. (2007). In silico evolutionary developmental neurobiology and the origin of natural language. In C. Lyon, C. L. Nehaniv, & A. Cangelosi (Eds.), Emergence of communication and language (pp. 151–187). London: Springer.

    Chapter  Google Scholar 

  • Theakston, A. L., Lieven, E. V. M., Pine, J. M., & Rowland, C. F. (2001). The role of performance limitations in the acquisition of verb-argument structure: an alternative account. Journal of Child Language, 28, 127–152.

    Article  Google Scholar 

  • Veneziano, E., & Sinclair, H. (2000). The changing status of “filler syllables” on the way to grammatical morphemes. Journal of Child Language, 27, 461–500.

    Article  Google Scholar 

  • Wasserman, S., & Faust, K. (1994). Social network analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricard V. Solé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Corominas-Murtra, B., Valverde, S., Solé, R.V. (2010). Emergence of Scale-Free Syntax Networks. In: Nolfi, S., Mirolli, M. (eds) Evolution of Communication and Language in Embodied Agents. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01250-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01250-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01249-5

  • Online ISBN: 978-3-642-01250-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics