Skip to main content

A Dynamic Model of Social Network Formation

  • Chapter
  • First Online:
Adaptive Networks

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

We consider a dynamic social network model in which agents play repeated games in pairings determined by a stochastically evolving social network. Individual agents begin to interact at random, with the interactions modeled as games. The game payoffs determine which interactions are reinforced, and the network structure emerges as a consequence of the dynamics of the agents’ learning behavior. We study this in a variety of game-theoretic conditions and show that the behavior is complex and sometimes dissimilar to behavior in the absence of structural dynamics. We argue that modeling network structure as dynamic increases realism without rendering the problem of analysis intractable.

This chapter is based on B. Skyrms and R. Pemantle, “A Dynamic Model of Social Network Formation” PNAS 97 (16), 9340-9346 (2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refernces

  1. Hofbauer, J. and Sigmund, K. (1988). The theory of evolution and dynamical systems (Cambridge University Press: Cambridge).

    MATH  Google Scholar 

  2. Weibull, J. (1997). Evolutionary game theory (MIT Press: Cambridge, MA).

    Google Scholar 

  3. Feldman, M. and Thomas, E. (1987). Behavior-dependent contexts for repeated player of the Prisoner’s Dilemma II: Dynamical aspects of the evolution of cooperation. J. Theor. Biol. 128, 297–315.

    Article  MathSciNet  Google Scholar 

  4. Wright, S. (1921). Systems of mating III: assortative mating based on somatic resemblance. Genetics 6, 144–161.

    Google Scholar 

  5. Wright, S. (1945). Tempo and mode in evolution: a critical review. Ecology 26, 415–419.

    Article  Google Scholar 

  6. Jackson, M. and Watts, A. (1999). On the formation of interaction networks in social coordination games. Working paper.

    Google Scholar 

  7. Durrett, R. and Neuhauser, C. (1997). Coexistence results for some competition models. Ann. Appl. Prob. 7, 10–45.

    Article  MATH  MathSciNet  Google Scholar 

  8. Kang, H.-C., Krone, S. and Neuhauser, C. (1995). Stepping stone models with extinction and recolonization. Ann. Appl. Prob. 5, 1025–1060.

    Article  MATH  MathSciNet  Google Scholar 

  9. Durrett, R. and Levin, S. (1994). The importance of being discrete (and spatial). Theor. Pop. Biol. 46, 363–394.

    Article  MATH  Google Scholar 

  10. Blume, L. (1993). The statistical mechanics of strategic interaction. Games Econ. Behav. 5, 387–423.

    Article  MATH  MathSciNet  Google Scholar 

  11. Pollack, G. B. (1989). Evolutionary stability on a viscous lattice. Soc. Networks 11, 175–212.

    Article  Google Scholar 

  12. Lindgren, K. and Nordahl, M. (1994). Evolutionary dynamics and spatial games. Physica D 75, 292–309.

    Article  MATH  Google Scholar 

  13. Anderlini, L. and Ianni, A. (1997). Learning on a torus. In: The dynamics of norms, ed. C. Bicchieri, R. Jeffrey, and B. Skyrms (Cambridge University Press: Cambridge) 87–107.

    Google Scholar 

  14. Ellison, G. (1993). Learning, local interaction, and coordination. Econometrica 61, 1047–1071.

    Article  MATH  MathSciNet  Google Scholar 

  15. Watts, D. and Strogatz, S. (1998) Collective dynamics of “small-world” networks. Nature 393, 440–442.

    Article  Google Scholar 

  16. Schelling, T. (1969) Models of Segregation. Am. Eco. Rev., Papers Proc. 59, 488–493.

    Google Scholar 

  17. Schelling, T. (1971). Dynamic models of Segregation. J. Math. Sociol. 1, 143–86.

    Google Scholar 

  18. Epstein, J. and Axtell, R. (1996). Growing Artificial Societies (MIT/Brookings: Cambridge, MA).

    Google Scholar 

  19. Zajonc, R.B. (1968). Attitudinal effects of mere exposure. J. Personality Social Psychol. Monogr. 9, 1–28.

    Article  Google Scholar 

  20. Coppersmith, D. and Diaconis, P. (1987). Reinforced Random Walk. Unpublished manuscript.

    Google Scholar 

  21. Arthur, W. B. (1989). Competing technologies, increasing returns, and lock-in by historical events. Econ. J. 99, 116–131.

    Article  Google Scholar 

  22. Eggenberger, F. and Pólya, G. (1923). Über die Statistik verketter Vorgange. Zeit. Angew. Math. Mech. 3, 279–289.

    Article  Google Scholar 

  23. Johnson, N. and Kotz, S. (1977). Urn models and their application (John Wiley & Sons: New York).

    MATH  Google Scholar 

  24. Durrett, R. (1996). Probability: Theory and examples, 2nd edition (Duxbury Press, Wadsworth Publishing Company: Belmont, CA).

    Google Scholar 

  25. Pemantle, R. and Skyrms, B. (2000). Reinforcement schemes may take a long time to exhibit limiting behavior. In Preparation.

    Google Scholar 

  26. Robbins, H. and Monro, S. (1951). A stochastic approximation method. Ann. Math. Statist. 22, 400–407.

    Article  MATH  MathSciNet  Google Scholar 

  27. Pemantle, R. (1990). Nonconvergence to unstable points in urn models and stochastic approximations. Ann. Probab. 18, 698–712.

    Article  MATH  MathSciNet  Google Scholar 

  28. Benaïm, M. and Hirsch, M. (1995). Dynamics of Morse-Smale urn processes. Ergodic Theor. Dyn. Syst. 15, 1005–1030.

    MATH  Google Scholar 

  29. Talagrand, M. (1995). Concentration of measure and isoperimetric inequalities in product spaces. IHES Publ. Math. 81, 73–205.

    MATH  MathSciNet  Google Scholar 

  30. Ehrenfest, P. and Ehrenfest, T. (1907). Über zwei bekannte Einwande gegen das Bolzmannshe H-Theorem. Phys. Zeit. 8, 311–314.

    Google Scholar 

  31. Diaconis, P. and Stroock, D. (1991). Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Prob. 1, 39–61.

    Article  MathSciNet  Google Scholar 

  32. Kac, M. (1947). Random walk and the theory of Brownian motion. Am. Math. Monthly 54, 369–391.

    Article  MATH  Google Scholar 

  33. Davis, B. (1990). Reinforced random walk. Prob. Theor. Rel. Fields 84, 203–229.

    Article  MATH  Google Scholar 

  34. Foster, D. and Young, H. P. (1990). Stochastic evolutionary game theory. Theor. Pop. Biol. 38, 219–232.

    Article  MATH  MathSciNet  Google Scholar 

  35. Ellison, G. (2000). Basins of attraction, long run stochastic stability, and the speed of step-by-step evolution. Rev. Econ. Studies, 67 (1), 17–45.

    Google Scholar 

  36. Rousseau, J.-J. (1984). A discourse on inequality. Tr. Maurice Cranston (Penguin Books: London).

    Google Scholar 

  37. Harsanyi, J. and Selten, R. (1988). A general theory of equilibrium in games (MIT Press: Cambridge, MA).

    MATH  Google Scholar 

  38. Kandori, M., Mailath, G. and Rob, R. (1993). Learning, mutation, and long run equilibria in games. Econometrica 61, 29–56.

    Article  MATH  MathSciNet  Google Scholar 

  39. Alexander, J. McKenzie (2007) The Structural Evolution of Morality. Cambridge: Cambridge University Press.

    Google Scholar 

  40. Argiento, R., Pemantle, R., Skyrms, B. and Volkov, S. (forthcoming) Learning to Signal: Analysis of a Micro-Level Reinforcement Model. Stochastic Processes and their Applications.

    Google Scholar 

  41. Bala, V. and Goyal, S. (2000) A Non-Cooperative Model of Network Formation. Econometrica 68: 1181–1229.

    Article  MATH  MathSciNet  Google Scholar 

  42. Bonacich. P. and Liggett, T. (2003) Asymptotics of a Matrix-Valued Markov Chain Arising in Sociology. Stochastic Processes and their Applications 104: 155–171.

    Article  MATH  MathSciNet  Google Scholar 

  43. Goyal, S. and Vega-Redondo, F. (2005) Network Formation and Social Co-ordination. Games and Economic Behavior 50: 178–207.

    Article  MATH  MathSciNet  Google Scholar 

  44. Gross, T. and Blasius, B. (2008) Adaptive Coevolutionary Networks: A Review. Journal of the Royal Society Interface 5: 259–271.

    Article  Google Scholar 

  45. Hanaki, N., Peterhansl, A., Dodds, P. S., and Watts, D. (2007) Cooperation in Evolving Social Networks. Management Science 53:1036–1050.

    Article  Google Scholar 

  46. Jackson, M. and Watts, A. (2002) On the Formation of Interaction Networks in Social Coordination Games. Games and Economic Behavior 41: 265–291.

    Article  MATH  MathSciNet  Google Scholar 

  47. Kirman, A, (1997) The Economy as an Evolving Network. Journal of Evolutionary Economics 7: 339–353.

    Article  Google Scholar 

  48. Liggett, T. M. and Rolles, S. (2004) An Infinite Stochastic Model of Social Network Formation. Stochastic Processes and their Applications 113: 65–80.

    Article  MATH  MathSciNet  Google Scholar 

  49. Pacheco, J. M., Traulsen, A. and Nowak, M. A. (2006) Coevolution of Structure and Strategy in Complex Networks with Dynamic Linking. Physical Review Letters 97: 258103.

    Article  Google Scholar 

  50. Pacheco, J. M., Traulsen, A., Ohtsuki, H. and Nowak, M. A. (2008) Repeated Games and Direct Reciprocity Under Active Linking. Journal of Theoretical Biology 250: 723–731.

    Article  Google Scholar 

  51. Pemantle, R. (2007) A Survey of Random Processes with Reinforcement. Probability Surveys 4: 1–79.

    Article  MathSciNet  Google Scholar 

  52. Pemantle, R. and Skyrms, B. (2004a) Time to Absorption in Discounted Reinforcement Models. Stochastic Processes and their Applications 109:1–12.

    Article  MATH  MathSciNet  Google Scholar 

  53. Pemantle, R. and Skyrms, B. (2004b) Network Formation by Reinforcement Learning: The Long and the Medium Run. Mathematical Social Sciences 48:315–327.

    Article  MATH  MathSciNet  Google Scholar 

  54. Santos, F. C., J. M. Pacheco and T. Lenaerts (2006) Cooperation Prevails when Individual Adjust their Social Ties. PloS Computational Biology 2: 1284–1291.

    Article  Google Scholar 

  55. Skyrms, B. (2004) The Stag Hunt and the Evolution of Social Structure. Cambridge: Cambridge University Press.

    Google Scholar 

  56. Skyrms, B. (2009) Groups and Networks: Their Role in the Evolution of Cooperation. In Groups, Games and the Global Good. Ed. Simon Levin. Berlin: Springer Verlag.

    Google Scholar 

  57. Skyrms, B. and R. Pemantle (forthcoming) Learning to Network. In Probability in Science. Ed. E. Eells and J. Fetzer. Open Court Publishing.

    Google Scholar 

  58. Watts, A. (2001) A Dynamic Model of Network Formation. Games and Economic Behavior 34: 331–341.

    Article  MATH  MathSciNet  Google Scholar 

  59. Zimmerman, M. G., Eguiluz, V. M., San Miguel, M. (2004) Coevolution of Dynamical States and Interactions in Dynamic Networks. Physical Review E 69: 065102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Skyrms .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skyrms, B., Pemantle, R. (2009). A Dynamic Model of Social Network Formation. In: Gross, T., Sayama, H. (eds) Adaptive Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01284-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01284-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01283-9

  • Online ISBN: 978-3-642-01284-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics