Skip to main content

Linear-Time Reductions of Resolution Proofs

  • Conference paper
Hardware and Software: Verification and Testing (HVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5394))

Included in the following conference series:

Abstract

DPLL-based SAT solvers progress by implicitly applying binary resolution. The resolution proofs that they generate are used, after the SAT solver’s run has terminated, for various purposes. Most notable uses in formal verification are: extracting an unsatisfiable core, extracting an interpolant, and detecting clauses that can be reused in an incremental satisfiability setting (the latter uses the proof only implicitly, during the run of the SAT solver). Making the resolution proof smaller can benefit all of these goals. We suggest two methods that are linear in the size of the proof for doing so. Our first technique, called Recycle-Units, uses each learned constant (unit clause) (x) for simplifying resolution steps in which x was the pivot, prior to when it was learned. Our second technique, called Recycle-Pivots, simplifies proofs in which there are several nodes in the resolution graph, one of which dominates the others, that correspond to the same pivot. Our experiments with industrial instances show that these simplifications reduce the core by ≈ 5% and the proof by ≈ 13%. It reduces the core less than competing methods such as run-till-fix, but whereas our algorithms are linear in the size of the proof, the latter and other competing techniques are all exponential as they are based on SAT runs. If we consider the size of the proof graph as being polynomial in the number of variables (it is not necessarily the case in general), this gives our method an exponential time reduction comparing to existing tools for small core extraction. Our experiments show that this result is evident in practice more so for the second method: rarely it takes more than a few seconds, even when competing tools time out, and hence it can be used as a cheap proof post-processing procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amla, N., McMillan, K.: Automatic abstraction without counterexamples. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O.: Linear-time reductions of resolution proofs (full version). Technical Report IE/IS-2008-02, Technion, Industrial Engineering (2008)

    Google Scholar 

  3. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.: Deciding bit-vector arithmetic with abstraction. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Cimatti, A., Griggio, A., Sebastiani, R.: A simple and flexible way of computing small unsatisfiable cores in sat modulo theories. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 334–339. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfiable core extraction. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 36–41. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Gershman, R., Koifman, M., Strichman, O.: Deriving small unsatisfiable cores with dominators. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 109–122. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Gershman, R., Strichman, O.: Haifasat: A new robust SAT solver. In: Wolfsthal, Y., Ur, S., Bin, E. (eds.) HVC 2005. LNCS, vol. 3875, pp. 76–89. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Grégoire, É., Mazure, B., Piette, C.: Local-search extraction of muses. Constraints 12(3), 325–344 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grumberg, O., Lerda, F., Strichman, O., Theobald, M.: Proof-guided underapproximation-widening for multi-process systems. In: POPL 2005: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 122–131. ACM Press, New York (2005)

    Google Scholar 

  10. Kroening, D., Ouaknine, J., Seshia, S., Strichman, O.: Abstraction-based satisfiability solving of Presburger arithmetic. In: Alur, R., Peled, D. (eds.) CAV 2004. LNCS, vol. 3114, pp. 308–320. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph. ACM Trans. Program. Lang. Syst. 1(1), 121–141 (1979)

    Article  MATH  Google Scholar 

  12. McMillan, K.: Interpolation and sat-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Mneimneh, M.N., Lynce, I., Andraus, Z.S., Silva, J.P.M., Sakallah, K.A.: A branch-and-bound algorithm for extracting smallest minimal unsatisfiable formulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 467–474. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. J. Comput. Syst. Sci. 37(1), 2–13 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ryan, L.: Efficient algorithms for clause-learning SAT solvers. Master’s thesis, Simon Fraser University (2004)

    Google Scholar 

  16. Shtrichman, O.: Prunning techniques for the SAT-based bounded model checking problem. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144, p. 58. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Tseitin, G.: On the complexity of proofs in poropositional logics. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning: Classical Papers in Computational Logic 1967–1970, vol. 2. Springer, Heidelberg (1983); Originally published 1970

    Google Scholar 

  18. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable boolean formulas (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O. (2009). Linear-Time Reductions of Resolution Proofs. In: Chockler, H., Hu, A.J. (eds) Hardware and Software: Verification and Testing. HVC 2008. Lecture Notes in Computer Science, vol 5394. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01702-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01702-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01701-8

  • Online ISBN: 978-3-642-01702-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics