Skip to main content

Interactive Learning-Based Realizability Interpretation for Heyting Arithmetic with EM 1

  • Conference paper
Typed Lambda Calculi and Applications (TLCA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5608))

Included in the following conference series:

Abstract

We interpret classical proofs as constructive proofs (with constructive rules for ∨ , ∃) over a suitable structure \({\mathcal N}\) for the language of natural numbers and maps of Gödel’s system \({\mathcal{T}}\). We introduce a new Realization semantics we call “Interactive learning-based Realizability”, for Heyting Arithmetic plus EM 1 (Excluded middle axiom restricted to \(\Sigma^0_1\) formulas). Individuals of \({\mathcal N}\) evolve with time, and realizers may “interact” with them, by influencing their evolution. We build our semantics over Avigad’s fixed point result [1], but the same semantics may be defined over different constructive interpretations of classical arithmetic (in [7], continuations are used). Our notion of realizability extends Kleene’s realizability and differs from it only in the atomic case: we interpret atomic realizers as “learning agents”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avigad, J.: Update Procedures and the 1-Consistency of Arithmetic. Math. Log. Q. 48(1), 3–13 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akama, Y., Berardi, S., Hayashi, S., Kohlenbach, U.: An Arithmetical Hierarchy of the Law of Excluded Middle and Related Principles. In: LICS 2004, pp. 192–201 (2004)

    Google Scholar 

  3. Aschieri, F., Berardi, S.: An Interactive Realizability... (Full Paper), Tech. Rep., Un. of Turin (2009), http://www.di.unito.it/~stefano/Realizers2009.pdf

  4. Berardi, S.: Classical Logic as Limit .... MSCS 15(1), 167–200 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Berardi, S.: Some intuitionistic equivalents of classical principles for degree 2 formulas. Annals of Pure and Applied Logic 139(1-3), 185–200 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berardi, S., Coquand, T., Hayashi, S.: Games with 1-Bactracking. In: GALOP 2005 (2005)

    Google Scholar 

  7. Berardi, S., de’Liguoro, U.: A calculus of realizers for EM 1-Arithmetic. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 215–229. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Coquand, T.: A Semantic of Evidence for Classical Arithmetic. Journal of Symbolic Logic 60, 325–337 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dalen, D.v.: Logic and Structure, 3rd edn. Springer-, Heidelberg (1994)

    Book  MATH  Google Scholar 

  10. Girard, J.-Y.: Proofs and Types. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  11. Gold, E.M.: Limiting Recursion. Journal of Symbolic Logic 30, 28–48 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hayashi, S., Sumitomo, R., Shii, K.: Towards Animation of Proofs -Testing Proofs by Examples. Theoretical Computer Science (2002)

    Google Scholar 

  13. Hayashi, S.: Can Proofs be Animated by Games? FI 77(4), 331–343 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Hayashi, S.: Mathematics based on incremental learning - Excluded Middle and Inductive Inference. Theoretical Computer Science 350, 125–139 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kleene, S.C.: On the Interpretation of Intuitionistic Number Theory. Journal of Symbolic Logic 10(4), 109–124 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  16. Popper, K.: The Logic of Scientific Discovery. Routledge Classics, Routledge (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aschieri, F., Berardi, S. (2009). Interactive Learning-Based Realizability Interpretation for Heyting Arithmetic with EM 1 . In: Curien, PL. (eds) Typed Lambda Calculi and Applications. TLCA 2009. Lecture Notes in Computer Science, vol 5608. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02273-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02273-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02272-2

  • Online ISBN: 978-3-642-02273-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics