Skip to main content

Laser Heterodyne Spectroscopy

  • Chapter
  • First Online:
Laser Heterodyning

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 149))

  • 1252 Accesses

Abstract

In 1947, Gorelik [1] and practically at the same time Forrester, Parkins, and Gerjuoy [2] expressed the idea of observing low-frequency interference oscillations (beatings) between two incoherent light sources of slightly different optical frequencies. At that time, any such experiment seemed to be unreal because spectral intensity of traditional light sources was too small. However, 8 years later Forrester, Gudmundsen, and Johnson [3] reported on observation of beatings between σ components of the Zeeman splitting of the 202Hg green line at the wavelength 0.5461 ?m. To explain the difficulties and complexity of the experiment, it would be enough to say that the signal-to-noise ratio was only 10−4 at the frequency of 10 GHz. For detecting the signal, the special cumbersome ultrahigh frequency vacuum photodiode was designed and manufactured. The whole experimental arrangement was so complicated that every practical implementation of this method seemed to be unreal. Nonetheless, even at that time it was clear that, using the light sources of much narrower spectral line and high enough spectral flux, it was possible to significantly simplify the experiment.

The situation changed dramatically with the invention of lasers. Practically simultaneously with the announcement of the first gaseous laser, the basic work by Forrester [4] appeared, in which theoretical background of spectral measurements with laser heterodyning was formulated. This work also described the method of spectral measurements without reference beam, which was later called the homodyne spectroscopy. From that moment, the laser heterodyne spectroscopy has evolved into a valuable technique of precise spectral measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.S. Gorelik, Doklady Akademii Nauk SSSR 58, 45 (1947)

    Google Scholar 

  2. A.T. Forrester, W.E. Parkins, E. Geruoy, Phys. Rev. 72, 728 (1947)

    Article  ADS  Google Scholar 

  3. A.T. Forrester, R.A. Gudmundsen, P.O. Johnson, Phys. Rev. 99, 1691 (1955)

    Article  ADS  Google Scholar 

  4. A.T. Forrester, J. Opt. Soc. Am. 51, 253 (1961)

    Article  ADS  Google Scholar 

  5. J.R. Klauder, E.C.G. Sudarshan, Fundamentals of Quantum Optics, 3rd edn. (Dover, Mineola, 2006), p. 304

    Google Scholar 

  6. S.M. Rytov, Yu.A. Kravzov, V.I. Tatarskii, Introduction to Statistical Radio Physics, Part 2: Stochastical Fields (Nauka, Moscow, 1978), p. 463

    Google Scholar 

  7. H.Z. Cummins, H.L. Swinney, Light beating spectroscopy, in: Progress in Optics, vol. VIII, ed by E. Wolf (North-Holland, Amsterdam, 1970), p. 132

    Google Scholar 

  8. E. Nelson, Dynamical Theories of Brownian Motion, 2nd edn. (Princeton University Press, Princeton, 2001), p. 146

    Google Scholar 

  9. A. Lomakin, D.B. Teplow, G.B. Benedek, Quasielastic light scattering for protein assembly studies. In: Amyloid Proteins: Methods and Protocols. Methods in Molecular Biology, vol. 299, ed. by E.M. Sigurdsson (Humana Press, Totowa, NJ, 2005), pp. 153–173

    Google Scholar 

  10. S.M. Rytov, Introduction to Statistical Radio Physics, Part 1: Random Processes (Nauka, Moscow, 1976), p. 463

    Google Scholar 

  11. R. Pecora, Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Plenum Press, New York, 1985), p. 436

    Google Scholar 

  12. K.S. Schmitz, An Introduction to Dynamic Light Scattering by Macromolecules (Academic Press, Boston, 1990), p. 472

    Google Scholar 

  13. G.B. Benedek, Optical mixing spectroscopy, with applications to problems in physics, chemistry, biology and engineering. In: Polarization, Matter and Radiation (Presses Universitaire de France, 1969), pp. 49–84

    Google Scholar 

  14. E.E. Uzgiris, Introduction to laser light scattering spectroscopy in electrophoresis, in: Molecular Electro-Optics: Electro-Optical Properties of Macromoleculas and Colloids in Solution, ed. by S. Krause (Plenum Press, New York, 1981), p. 485

    Google Scholar 

  15. E.E. Uzgiris, Opt. Commun. 6 55 (1972)

    Article  ADS  Google Scholar 

  16. E.E. Uzgiris, D.H. Cluxton, Rev. Sci. Instrum. 51 44 (1980)

    Article  ADS  Google Scholar 

  17. V.M. Gunko, A.V. Klyueva, Y.N. Levchuk, R. Lboda, Adv. Coll. Interf. Sci. 105(1–3) 201 (2003)

    Article  Google Scholar 

  18. K. Ishii, R. Yoshida, T. Iwai, Opt. Lett. 30(5) 555 (2005)

    Article  ADS  Google Scholar 

  19. B. Rajan, T.G. Van Leeuwen, W. Steenbergen, J. Biomed. Opt. 12(2) 024020 (2007)

    Article  Google Scholar 

  20. C.K.N. Patel, W.M. Sharpless, Proc. IEEE 52 107 (1964)

    Article  Google Scholar 

  21. J.L. Hall, W.W. Morey, Appl. Phys. Lett. 10 152 (1967)

    Article  ADS  Google Scholar 

  22. F.R. Petersen, D.G. McDonald, J.D. Cupp, B.L. Danielsen, Accurate rotational constants, frequencies and wavelengths from lasers stabilized by saturated absorption, in Laser Spectroscopy, ed. by R.G. Brewer, A. Mooradian (Plenum Press, New York, 1974), p. 555

    Google Scholar 

  23. D.L. Spears, C. Freed, Appl. Phys. Lett. 23 445 (1973)

    Article  ADS  Google Scholar 

  24. T.J. Bridges, T.Y. Chang, Phys. Rev. Lett. 22 811 (1969)

    Article  ADS  Google Scholar 

  25. C. Freed, A. Javan, Appl. Phys. Lett. 17 53 (1970)

    Article  ADS  Google Scholar 

  26. C. Freed, IEEE J. Quant. Electron. QE-18 120 (1982)

    Google Scholar 

  27. B.C. Young, F.C. Cruz, W.M. Itano, J.C. Bergquist, Phys. Rev. Lett. 82(19) 3799 (1999)

    Article  ADS  Google Scholar 

  28. B.C. Young, R.J. Rafac, J.A. Beall, F.C. Cruz, W.M. Itano, D.J. Wineland, J.C. Bergquist, Hg +  optical frequency standard: recent progress. In: ICOLS 2005, Vol. XVII, Laser Spectroscopy (World Scientific, Cairngorm, Aviemore, Scotland), p. 433

    Google Scholar 

  29. J.L. Hall, Rev. Mod. Phys. 78 1279 (2006)

    Article  ADS  Google Scholar 

  30. O. Acef, Opt. Commun. 134 479 (1997)

    Article  ADS  Google Scholar 

  31. V. Bernard, C. Daussy, G. Nogues, L. Constanti, P.E. Durand, A. Amy-Klein, A. Van Lerberghe, C. Chardonnet, IEEE J. Quant. Electron. 33(8) 1282 (1997)

    Google Scholar 

  32. G.D. Rovera, O. Acef, IEEE Trans. Instr. Meas. 48(2) 571 (1999)

    Google Scholar 

  33. J. Stake, Varactors. In: RF and Microwave Semiconductor Device Handbook, ed. By J.M. Golio (CRC Press, Boca Raton, FL, 2002), Chap. ??

    Google Scholar 

  34. W.M. Sharpless, Proc. IEEE 52 207 (1964)

    Article  Google Scholar 

  35. M. DiDomenico, W.M. Sharpless, J.J. McNicol, Appl. Opt. 4(6) 677 (1965)

    Article  ADS  Google Scholar 

  36. W. Krieger, Acta Phys. Polonica A61 571 (1982)

    Google Scholar 

  37. L.O. Hocker, D.R. Sokoloff, V. Daneu, A. Szoke, A. Javan, Appl. Phys. Lett. 12(12) 401 (1968)

    Article  ADS  Google Scholar 

  38. P. Esfandiari, G. Bernstein, P. Fay, W. Porod, B. Rakos, A. Zarandy, B. Berland, L. Boloni, G. Boreman, B. Lail, B. Monacelli, A. Weeks, Proc. SPIE 5783 470 (2005)

    Article  ADS  Google Scholar 

  39. B. Frech, M. Murtz, P. Palm, R. Lotze, W. Urban, A.G. Maki, J. Mol. Spectr. 190 91 (1998)

    Article  ADS  Google Scholar 

  40. K.M. Evenson, D.A. Jennings, F.R. Petersen, J.S. Wells, R.E. Drullinger, Prog. Quant. Electr. 8 143 (1984)

    Article  ADS  Google Scholar 

  41. K.M. Evenson, D.A. Jennings, K.R. Leopold, L.R. Zink, Tunable far infrared spectroscopy. In: Laser Spectroscopy VII, ed. by T.W. Haensch, Y.R. Schen (Springer Series in Optical Sciences, vol.49, Springer Verlag, 1985) p. 366

    Google Scholar 

  42. K.M. Evenson, D.A. Jennings, M.D. Vanek, Tunable far infrared spectroscopy. In: Frontiers of Laser Spectroscopy of Gases, ed by A.C.P. Alves, J.M. Brown, J.M. Hollas (Kluwer, Dordrecht, 1988) pp. 43–51

    Google Scholar 

  43. E.R. Brown, F.W. Smith, K.A. McIntosh, J. Appl. Phys. 73(3) 1480 (1993)

    Article  ADS  Google Scholar 

  44. J.E. Bjarnason, T.L.J. Chan, A.W.M. Lee, E.R. Brown, D.C. Driscoll, M. Hanson, A.C. Gossard, R.E. Muller, Appl. Phys. Lett. 85(18) 3983 (2004)

    Article  ADS  Google Scholar 

  45. S. Matsuura, M. Tami, H. Abe, K. Sakai, H. Ozeki, S. Saito, J. Mol. Spectrosc. 187 97 (1998)

    Article  ADS  Google Scholar 

  46. G.C. Bjorklund, Opt. Lett. 5 15 (1980)

    Article  ADS  Google Scholar 

  47. J.D. Jackson, Classical Electrodynamics, 3rd edn (Wiley, New York, 1999), Chap. 7

    Google Scholar 

  48. J.M. Supplee, E.A. Whittaker, W. Lenth, Appl. Opt. 33(27) 6294 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Protopopov .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Protopopov, V.V. (2009). Laser Heterodyne Spectroscopy. In: Laser Heterodyning. Springer Series in Optical Sciences, vol 149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02338-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02338-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02337-8

  • Online ISBN: 978-3-642-02338-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics