Skip to main content

The Origin of Evolution in Physical Systems

  • Conference paper
Complex Sciences (Complex 2009)

Abstract

A tentative outline for a model for the evolution of physical systems is presented. The universal classes of dynamical behaviors found in Cellular Automata experiments provide the basis for introducing the variation-stabiliza-tion principle as a synthetic interpretation of these phenomena. It is suggested that biological evolution takes its root in the evolution of physical systems as a particular case of the variation-stabilization principle that occurs at the transi-tion phase between ordered and chaotic regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Darwin, E.: Zoonomia or, The Laws of Organic Life, 3rd edn., vol. 1. J. Johnson, London (1801)

    Google Scholar 

  2. Prigogine, I., Stengers, I.: Order out of Chaos, Man’s New Dialogue with Nature. Bantam Books, New York (1984)

    Google Scholar 

  3. Smolin, L.: The Life in the Cosmos. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  4. Magnier, M., Lattaud, C., Heudin, J.C.: Complexity Classes in the Two-dimensional Life Cellular Automata Subspace. Complex Systems 11, 419–436 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Wolfram, S.: Universality and Complexity in Cellular Automata. Physica D 10, 1–35 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Langton, C.G.: Computation at the edge of chaos: Phase transitions and emergent computation. Physica D 42, 12–37 (1990)

    Article  MathSciNet  Google Scholar 

  7. Heudin, J.C.: Modeling Complexity using Hierarchical Multi-Agent Systems. In: 6th International Workshop on Data Analysis in Astronomy, Erice (2007)

    Google Scholar 

  8. Gardner, M.: The fantastic combinations of John Conway’s new solitaire game “Life”. Scientific American 223, 120–123 (1970)

    Article  Google Scholar 

  9. Bays, C.: Candidates for the game of life in three dimensions. Complex Systems 1, 373–400 (1987)

    MathSciNet  MATH  Google Scholar 

  10. Langton, C.G.: Life at the edge of chaos. In: Artificial Life II, SFI Studies in the Sciences of Complexity, vol. 10, pp. 41–91. Addison Wesley, Reading (1991)

    Google Scholar 

  11. Packard, N.H.: Adaptation toward the edge of chaos. In: Kelso, J., Mandell, A., Shlesinger, M. (eds.) Dynamic Patterns in Complex Systems, pp. 239–301. World Scientific, Singapore (1988)

    Google Scholar 

  12. Langton, C.G.: Computation at the edge of chaos: Phase transitions and emergent computation. Physica D 42, 12–37 (1990)

    Article  MathSciNet  Google Scholar 

  13. Mitchell, M., Hraber, P.T., Crutchfield, J.P.: Revisiting the edge of chaos: Evolving cellular automata to perform computations. Complex Systems 7, 89–130 (1993)

    MATH  Google Scholar 

  14. Crutchfield, J.P., Packard, N.H.: Symbolic dynamics of noisy chaos. Physica D 7, 201 (1983)

    Article  MathSciNet  Google Scholar 

  15. Berlekamp, E., Conway, J.H., Guy, R.: Winning ways for your mathematical plays. Academic Press, London (1982)

    MATH  Google Scholar 

  16. Kubik, A.: Toward a Formalization of Emergence. Artificial Life 1, 41–65 (2003)

    Article  Google Scholar 

  17. Heudin, J.-C.: A new candidate rule for the game of two-dimensional life. Complex systems 10, 367–381 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Bohr, N.: Causality and Complementarity. Philosophy of Science 4, 289–298 (1937)

    Article  Google Scholar 

  19. Heudin, J.-C.: Complexity classes in three-dimensional gravitational agents. In: Artificial Life VIII, pp. 9–13. MIT Press, Sydney (2002)

    Google Scholar 

  20. Torrel, J.C., Lattaud, C., Heudin, J.C.: Studying complex stellar dynamics using a hierarchical multi-agent model. In: 6th International Workshop on Data Analysis in Astronomy, Erice (2007)

    Google Scholar 

  21. Métivier, M., Lattaud, C., Heudin, J.-C.: A Stress-based Speciation Model in LifeDrop. In: 8th International Conference on Artificial Life, pp. 121–126. MIT Press, Sydney (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Heudin, JC. (2009). The Origin of Evolution in Physical Systems. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02466-5_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02465-8

  • Online ISBN: 978-3-642-02466-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics