Skip to main content

Relationship between an Input Sequence and Asymmetric Connections Formed by Theta Phase Precession and STDP

  • Conference paper
Advances in Neuro-Information Processing (ICONIP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5506))

Included in the following conference series:

Abstract

Neural dynamics of the ”theta phase precession” in the hippocampus are known to have a computational advantage with respect to memory encoding. Computational studies have shown that a combination of theta phase precession and spike-timing-dependent plasticity (STDP) can serve as recurrent networks in various methods of memory storage. Conversely, the proposed dynamics of neurons and synapses appear too complicated to give any clear perspective on the network formation in the case of a large number of neurons (>1000). In this paper, we theoretically analyzed the evolution of synaptic weights under a given input sequence. We present our results as a simple equation demonstrating that the magnitude of the slow component of an input sequence giving successive coactivation results in asymmetric connection weights. Further comparison with computer experiments confirms the predictability of network formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Keefe, J., Nadel, L.: The hippocampus as a cognitive map. Clarendon Press, Oxford (1978)

    Google Scholar 

  2. Gaffan, D.: Scene-specific memory for objects: a model of episodic memory impairment in monkeys with fornix transection. J. Cogn. Neurosci. 6, 305–320 (1994)

    Article  Google Scholar 

  3. Eacott, M.J., Norman, G.: Integrated memory for object, place, and context in rats: a possible model of episodic-like memory? J. Neurosci. 24, 1948–1953 (2004)

    Article  Google Scholar 

  4. Vanderwolf, C.H.: Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr. Clin. Neurophysiol. 26(4), 407–418 (1969)

    Article  Google Scholar 

  5. O’Keefe, J., Recce, M.L.: Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993)

    Article  Google Scholar 

  6. Skaggs, W.E., McNaughton, B.L., Wilson, M.A., Barnes, C.A.: Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996)

    Article  Google Scholar 

  7. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)

    Google Scholar 

  8. Jensen, O., Lisman, J.E.: Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learning and Memory 3, 279–287 (1996)

    Article  Google Scholar 

  9. Levy, W.B.: A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus 6(6), 579–590 (1996)

    Article  Google Scholar 

  10. Yamaguchi, Y.: A theory of hippocampal memory based on theta phase precession. Biol. Cybern. 89, 1–9 (2003)

    MATH  Google Scholar 

  11. Sato, N., Yamaguchi, Y.: Memory encoding by theta phase precession in the hippocampal network. Neural Comput. 15(10), 2379–2397 (2003)

    Article  MATH  Google Scholar 

  12. Wu, Z., Yamaguchi, Y.: Input-dependent learning rule for the memory of spatiotemporal sequences in hippocampal network with theta phase precession. Biol. Cybern. 90(2), 113–124 (2004)

    Article  MATH  Google Scholar 

  13. Wagatsuma, H., Yamaguchi, Y.: Cognitive map formation through sequence encoding by theta phase precession. Neural Comput. 16(12), 2665–2697 (2004)

    Article  MATH  Google Scholar 

  14. Burgess, N., Recce, M., O’Keefe, J.: A model of hippocampal function. Neural Netw. 7, 1065–1081 (1994)

    Article  MATH  Google Scholar 

  15. Sato, N., Yamaguchi, Y.: On-line formation of a hierarchical cognitive map for object-place association by theta phase coding. Hippocampus 15, 963–978 (2005)

    Article  Google Scholar 

  16. Sato, N., Yamaguchi, Y.: Memory Encoding of Object Relocation in a Hierarchical Associative Network with Theta Phase Coding. In: IEEE International Joint Conference on Neural Networks, Budapest, pp. 637–642 (2004)

    Google Scholar 

  17. Földiak, P.: Learning invariance from transformation sequences. Neural Comput. 3, 194–200 (1991)

    Article  Google Scholar 

  18. Izhikevich, E.M.: Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral Cortex 17(10), 2443–2452 (2007)

    Article  Google Scholar 

  19. Jones, M.W., Wilson, M.A.: Phase precession of medial prefrontal cortical activity relative to the hippocampal theta rhythm. Hippcaompus 15, 867–873 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sato, N., Yamaguchi, Y. (2009). Relationship between an Input Sequence and Asymmetric Connections Formed by Theta Phase Precession and STDP. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02490-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02490-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02489-4

  • Online ISBN: 978-3-642-02490-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics