Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Numerous applications of nanotechnology have been developed to probe the unique mechanical properties of cells. In addition, since biological materials exhibit such a wide spectrum of properties, they offer new concepts for nonbiological biomimetic applications. In this chapter, the viscoelastic properties of a cell and its subcellular compartments are described. First, a qualitative picture is presented of the relevant building blocks: the cytoskeleton, cell membrane, nucleus, adhesive complexes, and motor proteins. Next, the various methods used to probe cellular and subcellular mechanics are described, and some of the quantitative results presented. These measurements are then discussed in the context of several theories and computational methods that have been proposed to help interpret the measurements and provide nanomechanical insight into their origin. Finally, current understanding is summarized in the context of directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

ABP:

actin binding protein

AFM:

atomic force microscope

AFM:

atomic force microscopy

ATP:

adenosine triphosphate

BPAG1:

bullous pemphigoid antigen 1

CAS:

Crk-associated substrate

CSK:

cytoskeleton

DNA:

deoxyribonucleic acid

ECM:

extracellular matrix

FA:

focal adhesion

FAK:

focal adhesion kinase

GDP:

guanosine diphosphate

GFP:

green fluorescent protein

GTP:

guanosine triphosphate

IF:

intermediate filament

IF:

intermediate-frequency

KASH:

Klarsicht, ANC-1, Syne Homology

MAPK:

mitogen-activated protein kinase

MEMS:

microelectromechanical system

MscL:

mechanosensitive channel of large conductance

PDMS:

polydimethylsiloxane

PI3K:

phosphatidylinositol-3-kinase

PKC:

protein kinase C

PML:

promyelocytic leukemia

Pax:

paxillin

RGD:

arginine–glycine–aspartic

RNA:

ribonucleic acid

SUN:

Sad1p/UNC-84

VBS:

vinculin binding site

References

  1. P.A. DiMilla, K. Barbee, D.A. Lauffenburger: Mathematical model for the effects of adhesion and mechanics on cell migration speed, Biophys. J. 60(1), 15–37 (1991)

    Article  Google Scholar 

  2. R. Horwitz, D. Webb: Cell migration, Curr. Biol. 13(19), R756–R759 (2003)

    Article  Google Scholar 

  3. P. Friedl: Prespecification and plasticity: shifting mechanisms of cell migration, Curr. Opin. Cell Biol. 16(1), 14–23 (2004)

    Article  Google Scholar 

  4. R.A. Christopher, J.L. Guan: To move or not: How a cell responds, Int. J. Mol. Med. 5(6), 575–581 (2000)

    Google Scholar 

  5. D.J. Tschumperlin, G. Dai, I.V. Maly, T. Kikuchi, L.H. Laiho, A.K. McVittie, K.J. Haley, C.M. Lilly, P.T. So, D.A. Lauffenburger, R.D. Kamm, J.M. Drazen: Mechanotransduction through growth-factor shedding into the extracellular space, Nature 429(6987), 83–86 (2004)

    Article  Google Scholar 

  6. D.E. Ingber: Cellular basis of mechanotransduction, Biol. Bull. 194(3), 323–325 (1998), discussion 325–327

    Article  Google Scholar 

  7. P.F. Davies: Multiple signaling pathways in flow-mediated endothelial mechanotransduction: PYK-ing the right location, Arterioscler. Thromb. Vasc. Biol. 22(11), 1755–1757 (2002)

    Article  Google Scholar 

  8. J.Y. Shyy, S. Chien: Role of integrins in endothelial mechanosensing of shear stress, Circ. Res. 91(9), 769–775 (2002)

    Article  Google Scholar 

  9. H. Huang, R.D. Kamm, R.T. Lee: Cell mechanics and mechanotransduction: pathways, probes, and physiology, Am. J. Physiol. Cell Physiol. 287(1), C1–C11 (2004)

    Article  Google Scholar 

  10. P.A. Janmey, D.A. Weitz: Dealing with mechanics: mechanisms of force transduction in cells, Trends Biochem. Sci. 29(7), 364–370 (2004)

    Article  Google Scholar 

  11. V. Vogel, M. Sheetz: Local force and geometry sensing regulate cell functions, Nat. Rev. Mol. Cell Biol. 7(4), 265–275 (2006)

    Article  Google Scholar 

  12. M.R.K. Mofrad, R.D. Kamm (Eds.): Cellular Mechanotransduction: Diverse Perspectives from Molecules to Tissues (Cambridge Univ. Press, Cambridge 2010)

    Google Scholar 

  13. H. Lodish, A. Berk, P. Matsudaira, C.A. Kaiser, M. Krieger, M.P. Scott, L. Zipursky, J. Darnell: Molecular Cell Biology, 5th edn. (Freeman, New York 2000)

    Google Scholar 

  14. J. Howard: Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland 2001) pp. 288–289

    Google Scholar 

  15. T.M. Svitkina, G.G. Borisy: Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia, J. Cell Biol. 145(5), 1009–1026 (1999)

    Article  Google Scholar 

  16. H. Higuchi, Y.E. Goldman: Sliding distance per ATP molecule hydrolyzed by myosin heads during isotonic shortening of skinned muscle fibers, Biophys. J. 69(4), 1491–1507 (1995)

    Article  Google Scholar 

  17. Y. Tsuda, H. Yasutake, A. Ishijima, T. Yanagida: Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation, Proc. Natl. Acad. Sci. USA 93(23), 12937–12942 (1996)

    Article  Google Scholar 

  18. R. Yasuda, H. Miyata, K. Kinosita Jr.: Direct measurement of the torsional rigidity of single actin filaments, J. Mol. Biol. 263(2), 227–236 (1996)

    Article  Google Scholar 

  19. H. Isambert, P. Venier, A.C. Maggs, A. Fattoum, R. Kassab, D. Pantaloni, M.F. Carlier: Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins, J. Biol. Chem. 270(19), 11437–11444 (1995)

    Article  Google Scholar 

  20. F. Gittes, B. Mickey, J. Nettleton, J. Howard: Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape, J. Cell Biol. 120(4), 923–934 (1993)

    Article  Google Scholar 

  21. E. Fuchs, D.W. Cleveland: A structural scaffolding of intermediate filaments in health and disease, Science 279(5350), 514–519 (1998)

    Article  Google Scholar 

  22. M. Kirschner, E. Schulze: Morphogenesis and the control of microtubule dynamics in cells, J. Cell Sci. Suppl. 5, 293–310 (1986)

    Google Scholar 

  23. M. Cohen, K.K. Lee, K.L. Wilson, Y. Gruenbaum: Transcriptional repression, apoptosis, human disease and the functional evolution of the nuclear lamina, Trends Biochem. Sci. 26(1), 41–47 (2001)

    Article  Google Scholar 

  24. F. Alber, S. Dokudovskaya, L.M. Veenhoff, W. Zhang, J. Kipper, D. Devos, A. Suprapto, O. Karni-Schmidt, R. Williams, B.T. Chait, A. Sali, M.P. Rout: The molecular architecture of the nuclear pore complex, Nature 450(7170), 695–701 (2007)

    Article  Google Scholar 

  25. J.L.V. Broers, H.J. Kuijpers, C. Östlund, H.J. Worman, J. Endert, F.C.S. Ramaekers: Both lamin A and lamin C mutations cause lamina instability as well as loss of internal nuclear lamin organization, Exp. Cell Res. 304(2), 582–592 (2005)

    Article  Google Scholar 

  26. T. Pederson, U. Aebi: Nuclear actin extends, with no contraction in sight, Mol. Biol. Cell 16(11), 5055–5960 (2005)

    Article  Google Scholar 

  27. W.A. Hofmann, T. Johnson, M. Klapczynski, J.-L. Fan, P. de Lanerolle: From transcription to transport: Emerging roles for nuclear myosin I, Biochem. Cell Biol. 84(4), 418–426 (2006)

    Article  Google Scholar 

  28. W.A. Hofmann, L. Stojiljkovic, B. Fuchsova, G.M. Vargas, E. Mavrommatis, V. Philimonenko, K. Kysela, J.A. Goodrich, J.L. Lessard, T.J. Hope, P. Hozak, P. de Lanerolle: Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II, Nat. Cell Biol. 6(11), 1094–1101 (2004)

    Article  Google Scholar 

  29. K.G. Young, R. Kothary: Spectrin repeat proteins in the nucleus, Bioessays 27(2), 144–152 (2005)

    Article  Google Scholar 

  30. V.C. Padmakumar, S. Abraham, S. Braune, A.A. Noegel, B. Tunggal, I. Karakesisoglou, E. Korenbaum: Enaptin, a giant actin-binding protein, is an element of the nuclear membrane and the actin cytoskeleton, Exp. Cell Res. 295(2), 330–339 (2004)

    Article  Google Scholar 

  31. Q. Zhang, C.D. Ragnauth, J.N. Skepper, N.F. Worth, D.T. Warren, R.G. Roberts, P.L. Weissberg, J.A. Ellis, C.M. Shanahan: Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle, J. Cell Sci. 118(4), 673–687 (2005)

    Article  Google Scholar 

  32. M. Crisp, Q. Liu, K. Roux, J.B. Rattner, C. Shanahan, B. Burke, P.D. Stahl, D. Hodzic: Coupling of the nucleus and cytoplasm: Role of the LINC complex, J. Cell Biol. 172(1), 41–53 (2006)

    Article  Google Scholar 

  33. T. Libotte, H. Zaim, S. Abraham, V.C. Padmakumar, M. Schneide, W. Lu, M. Munck, C. Hutchison, M. Wehnert, B. Fahrenkrog, U. Saude, U. Aebi, A.A. Noegel, I. Karakesisoglou: Lamin A/C-dependent localization of Nesprin-2, a giant scaffolder at the nuclear envelope, Mol. Biol. Cell 16(7), 3411–3424 (2005)

    Article  Google Scholar 

  34. V.C. Padmakumar, T. Libotte, W. Lu, H. Zaim, S. Abraham, A.A. Noegel, J. Gotzmann, R. Foisner, I. Karakesisoglou: The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope, J. Cell Sci. 118(15), 3419–3430 (2005)

    Article  Google Scholar 

  35. D.T. Warren, Q. Zhang, P.L. Weissberg, C.M. Shanahan: Nesprins: Intracellular scaffolds that maintain cell architecture and coordinate cell function?, Expert Rev. Mol. Med. 7(11), 1–15 (2005)

    Article  Google Scholar 

  36. H.J. Worman, G.G. Gundersen: Here come the SUNs: A nucleocytoskeletal missing link, Trends Cell Biol. 16(2), 67–69 (2006)

    Article  Google Scholar 

  37. F. Haque, D.J. Lloyd, D.T. Smallwood, C.L. Dent, C.M. Shanahan, A.M. Fry, R.C. Trembath, S. Shackleton: SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton, Mol. Cell Biol. 26(10), 3738–3751 (2006)

    Article  Google Scholar 

  38. G.C. Pare, J.L. Easlick, J.M. Mislow, E.M. McNally, M.S. Kapiloff: Nesprin-1α contributes to the targeting of mAKAP to the cardiac myocyte nuclear envelope, Exp. Cell Res. 303(2), 388–399 (2005)

    Article  Google Scholar 

  39. S. Münter, J. Enninga, R. Vazquez-Martinez, E. Delbarre, B. David-Watine, U. Nehrbass, S.L. Shorte: Actin polymerisation at the cytoplasmic face of eukaryotic nuclei, BMC Cell Biol. 7, 23 (2006)

    Article  Google Scholar 

  40. J.L.V. Broers, E.A.G. Peeters, H.J.H. Kuijpers, J. Endert, C.V.C. Bouten, C.W.J. Oomens, F.P.T. Baaijens, F.C.S. Ramaekers: Decreased mechanical stiffness in LMNA–/– cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies, Hum. Mol. Genet. 13(21), 2567–2580 (2004)

    Article  Google Scholar 

  41. J. Lammerding, P.C. Schulze, T. Takahashi, S. Kozlov, T. Sullivan, R.D. Kamm, C.L. Stewart, R.T. Lee: Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction, J. Clin. Investig. 113(3), 370–378 (2004)

    Google Scholar 

  42. J.S.H. Lee, C.M. Hale, P. Panorchan, S.B. Khatau, J.P. George, Y. Tseng, C.L. Stewart, D. Hodzic, D. Wirtz: Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration, Biophys. J. 93(7), 2542–2552 (2007)

    Article  Google Scholar 

  43. Q. Zhang, C. Bethmann, N.F. Worth, J.D. Davies, C. Wasner, A. Feuer, C.D. Ragnauth, Q. Yi, J.A. Mellad, D.T. Warren, M.A. Wheeler, J.A. Ellis, J.N. Skepper, M. Vorgerd, B. Schlotter-Weigel, P.L. Weissberg, R.G. Roberts, M. Wehnert, C.M. Shanahan: Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity, Hum. Mol. Genet. 16(23), 2816–2833 (2007)

    Article  Google Scholar 

  44. M. Radmacher, J.P. Cleveland, M. Fritz, H.G. Hansma, P.K. Hansma: Mapping interaction forces with the atomic force microscope, Biophys. J. 66(6), 2159–2165 (1994)

    Article  Google Scholar 

  45. R.E. Mahaffy, S. Park, E. Gerde, J. Käs, C.K. Shih: Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy, Biophys. J. 86(3), 1777–1793 (2004)

    Article  Google Scholar 

  46. N. Wang, J.P. Butler, D.E. Ingber: Mechanotransduction across the cell surface and through the cytoskeleton, Science 260, 1124–1127 (1993)

    Article  Google Scholar 

  47. N. Wang, D.E. Ingber: Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension, Biophys. J. 66(6), 2181–2189 (1994)

    Article  Google Scholar 

  48. K.N. Dahl, A.J. Engler, J.D. Pajerowski, D.E. Discher: Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures, Biophys. J. 89(4), 2855–2864 (2005)

    Article  Google Scholar 

  49. D.E. Discher, N. Mohandas, E.A. Evans: Molecular maps of red cell deformation: hidden elasticity and in situ connectivity, Science 266(5187), 1032–1035 (1994)

    Article  Google Scholar 

  50. J.D. Pajerowski, K.N. Dahl, F.L. Zhong, P.J. Sammak, D.E. Discher: Physical plasticity of the nucleus in stem cell differentiation, Proc. Natl. Acad. Sci. USA 104(40), 15619–15624 (2007)

    Article  Google Scholar 

  51. A.C. Rowat, J. Lammerding, J.H. Ipsen: Mechanical properties of the cell nucleus and the effect of emerin deficiency, Biophys. J. 91(12), 4649–4664 (2006)

    Article  Google Scholar 

  52. E. Evans, B. Kukan: Passive material behavior of granulocytes based on large deformation and recovery after deformation tests, Blood 64(5), 1028–1035 (1984)

    Google Scholar 

  53. E.A. Evans: Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests, Biophys. J. 43(1), 27–30 (1983)

    Article  Google Scholar 

  54. E.A. Evans, R.M. Hochmuth: Membrane viscoelasticity, Biophys. J. 16(1), 1–11 (1976)

    Article  Google Scholar 

  55. N. Caille, Y. Tardy, J.J. Meister: Assessment of strain field in endothelial cells subjected to uniaxial deformation of their substrate, Ann. Biomed. Eng. 26(3), 409–416 (1998)

    Article  Google Scholar 

  56. V.L. Verstraeten, J.Y. Ji, K.S. Cummings, R.T. Lee, J. Lammerding: Increased mechanosensitivity and nuclear stiffness in Hutchinson-Gilford progeria cells: effects of farnesyltransferase inhibitors, Aging Cell 7(3), 383–393 (2008)

    Article  Google Scholar 

  57. N. Mohandas, R.M. Hochmuth, E.E. Spaeth: Adhesion of red cells to foreign surfaces in the presence of flow, J. Biomed. Mater. Res. 8(2), 119–136 (1974)

    Article  Google Scholar 

  58. T.G. Mason, K. Ganesan, D. Wirtz, J.H. van Zanten, S.C. Kuo: Particle tracking microrheology of complex fluids, Phys. Rev. Lett. 79(17), 3282–3285 (1977)

    Article  Google Scholar 

  59. T. Oliver, M. Dembo, K. Jacobson: Traction forces in locomoting cells, Cell Motil. Cytoskelet. 31(3), 225–240 (1995)

    Article  Google Scholar 

  60. J.L. Tan, J. Tien, D.M. Pirone, D.S. Gray, K. Bhadriraju, C.S. Chen: Cells lying on a bed of microneedles: An approach to isolate mechanical force, Proc. Natl. Acad. Sci. USA 100(4), 1484–1489 (2003)

    Article  Google Scholar 

  61. B. Fabry, G.N. Maksym, J.P. Butler, M. Glogauer, D. Navajas, N.A. Taback, E.J. Millet, J.J. Fredberg: Time scale and other invariants of integrative mechanical behavior in living cells, Phys. Rev. E 68(4), 041914 (2003)

    Article  Google Scholar 

  62. M. Glogauer, P. Arora, G. Yao, I. Sokholov, J. Ferrier, C.A. McCulloch: Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching, J. Cell Sci. 110(1), 11–21 (1977)

    Google Scholar 

  63. P.A. Janmey: Mechanical properties of cytoskeletal polymers, Curr. Opin. Cell Biol. 3(1), 4–11 (1991)

    Article  Google Scholar 

  64. M.R.K. Mofrad, N.A. Abdul-Rahim, H. Karcher, P.J. Mack, B. Yap, R.D. Kamm: Exploring the molecular basis for mechanosensation, signal transduction, and cytoskeletal remodeling, Acta Biomater. 1(3), 281–293 (2005)

    Article  Google Scholar 

  65. D. Mizuno, C. Tardin, C.F. Schmidt, F.C. MacKintosh: Nonequilibrium mechanics of active cytoskeletal networks, Science 315(5810), 370–373 (2007)

    Article  Google Scholar 

  66. F.C. MacKintosh, A.J. Levine: Nonequilibrium mechanics and dynamics of motor-activated gels, Phys. Rev. Lett. 100(1), 018104 (2008)

    Article  Google Scholar 

  67. J. Lammerding, R.D. Kamm, R.T. Lee: Mechanotransduction in cardiac myocytes, Ann. NY Acad. Sci. 1015, 53–70 (2004)

    Article  Google Scholar 

  68. M.L. Gardel, J.H. Shin, F.C. MacKintosh, L. Mahadevan, P.A. Matsudaira, D.A. Weitz: Scaling of F-actin network rheology to probe single filament elasticity and dynamics, Phys. Rev. Lett. 93(18), 188102 (2004)

    Article  Google Scholar 

  69. K.E. Kasza, A.C. Rowat, J. Liu, T.E. Angelini, C.P. Brangwynne, G.H. Koenderink, D.A. Weitz: The cell as a material, Curr. Opin. Cell Biol. 19(1), 101–107 (2007)

    Article  Google Scholar 

  70. C. Storm, J.J. Pastore, F.C. MacKintosh, T.C. Lubensky, P.A. Janmey: Nonlinear elasticity in biological gels, Nature 435(7039), 191–194 (2005)

    Article  Google Scholar 

  71. J.D. Humphrey, S. DeLange: An Introduction to Biomechanics (Springer, Berlin Heidelberg 2004)

    MATH  Google Scholar 

  72. L.J. Gibson, M.F. Ashby: Cellular Solids: Structure and Properties (Cambridge Univ. Press, Cambridge 1999)

    Google Scholar 

  73. D. Stamenović, J. Fredberg, N. Wang, J. Butler, D. Ingber: A microstructural approach to cytoskeletal mechanics based on tensegrity, J. Theor. Biol. 181, 125–136 (1996)

    Article  Google Scholar 

  74. R.C. Lee, E.H. Frank, A.J. Grodzinsky, D.K. Roylance: Oscillatory compressional behavior of articular cartilage and its associated electromechanical properties, J. Biomech. Eng. 103(4), 280–292 (1981)

    Article  Google Scholar 

  75. H. Isambert, A.C. Maggs: Dynamics and rheology of actin soltions, Macromolecules 29, 1036–1040 (1996)

    Article  Google Scholar 

  76. D.E. Ingber: Cellular tensegrity: Defining new rules of biological design that govern the cytoskeleton, J. Cell Sci. 104(3), 613–627 (1993)

    Google Scholar 

  77. N. Wang, I.M. Tolić-Nørrelykke, J. Chen, S.M. Mijailovich, J.P. Butler, J.J. Fredberg, D. Stamenović: Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells, Am. J. Physiol. Cell Physiol. 282(3), C606–C616 (2002)

    Google Scholar 

  78. E. Evans, K. Ritchie: Dynamic strength of molecular adhesion bonds, Biophys. J. 72(4), 1541–1555 (1977)

    Article  Google Scholar 

  79. K.C. Chang, D.F. Tees, D.A. Hammer: The state diagram for cell adhesion under flow: Leukocyte rolling and firm adhesion, Proc. Natl. Acad. Sci. USA 97(21), 11262–11267 (2000)

    Article  Google Scholar 

  80. D.A. Hammer, S.M. Apte: Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion, Biophys. J. 63(1), 35–57 (1992)

    Article  Google Scholar 

  81. G.I. Bell: Models for the specific adhesion of cells to cells, Science 200, 618–627 (1978)

    Article  Google Scholar 

  82. R. Waugh, E.A. Evans: Thermoelasticity of red blood cell membrane, Biophys. J. 26(1), 115–131 (1979)

    Article  Google Scholar 

  83. J.N. Israelachvili: Intermolecular and Surface Forces (Academic, San Diego 1992)

    Google Scholar 

  84. N. Mohandas, E. Evans: Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects, Annu. Rev. Biophys. Biomol. Struct. 23, 787–818 (1994)

    Article  Google Scholar 

  85. E.D. Sheets, R. Simson, K. Jacobson: New insights into membrane dynamics from the analysis of cell surface interactions by physical methods, Curr. Opin. Cell Biol. 7(5), 707–714 (1995)

    Article  Google Scholar 

  86. D.V. Zhelev, D. Needham, R.M. Hochmuth: Role of the membrane cortex in neutrophil deformation in small pipets, Biophys. J. 67(2), 696–705. (1994)

    Article  Google Scholar 

  87. N. Caille, O. Thoumine, Y. Tardy, J.-J. Meister: Contribution of the nucleus to the mechanical properties of endothelial cells, J. Biomech. 35(2), 177–187 (2002)

    Article  Google Scholar 

  88. F. Guilak, J.R. Tedrow, R. Burgkart: Viscoelastic properties of the cell nucleus, Biochem. Biophys. Res. Commun. 269(3), 781–786 (2000)

    Article  Google Scholar 

  89. A.C. Rowat, J. Lammerding, H. Herrmann, U. Ueli: Towards an integrated understanding of the structure and mechanics of the cell nucleus, Bioessays 30(3), 226–236 (2008)

    Article  Google Scholar 

  90. K.N. Dahl, S.M. Kahn, K.L. Wilson, D.E. Discher: The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber, J. Cell Sci. 117(20), 4779–4786 (2004)

    Article  Google Scholar 

  91. S. Deguchi, K. Maeda, T. Ohashi, M. Sato: Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle, J. Biomech. 38(9), 1751–1759 (2005)

    Article  Google Scholar 

  92. A.C. Rowat, L.J. Foster, M.M. Nielsen, M. Weiss, J.H. Ipsen: Characterization of the elastic properties of the nuclear envelope, J. R. Soc. Interface 2, 63–69 (2005)

    Article  Google Scholar 

  93. Y. Tseng, J.S.H. Lee, T.P. Kole, I. Jiang, D. Wirtz: Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking, J. Cell Sci. 117(10), 2159–2167 (2004)

    Article  Google Scholar 

  94. A.H.B. de Vries, B. Krenn, R. van Driel, V. Subramaniam, J.S. Kanger: Direct observation of nanomechanical properties of chromatin in living cells, Nano Lett. 7(5), 1424–1427 (2007)

    Article  Google Scholar 

  95. J. Lammerding, L.G. Fong, J.Y. Ji, K. Reue, C.L. Stewart, S.G. Young, R.T. Lee: Lamins A and C but not lamin B1 regulate nuclear mechanics, J. Biol. Chem. 281(35), 25768–25780 (2006)

    Article  Google Scholar 

  96. K.N. Dahl, P. Scaffidi, M.F. Islam, A.G. Yodh, K.L. Wilson, T. Misteli: Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome, Proc. Natl. Acad. Sci. USA 103(27), 10271–10276 (2006)

    Article  Google Scholar 

  97. D.P. Theret, M.J. Levesque, M. Sato, R.M. Nerem, L.T. Wheeler: The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements, J. Biomech. Eng. 110, 190–199 (1998)

    Article  Google Scholar 

  98. A. Vaziri, M.R. Mofrad: Mechanics and deformation of the nucleus in micropipette aspiration experiment, J. Biomech. 40(9), 2053–2062 (2007)

    Article  Google Scholar 

  99. J. Lammerding, K.N. Dahl, D.E. Discher, R.D. Kamm: Nuclear mechanics and methods, Methods Cell Biol. 83, 269–294 (2007)

    Article  Google Scholar 

  100. B. Geiger, A. Bershadsky: Exploring the neighborhood: Adhesion-coupled cell mechanosensors, Cell 110(2), 139–142 (2002)

    Article  Google Scholar 

  101. M.P. Sheetz: Cell control by membrane–cytoskeleton adhesion, Nat. Rev. Mol. Cell Biol. 2(5), 392–396 (2001)

    Article  Google Scholar 

  102. S.E. Lee, S. Chunsrivirot, R.D. Kamm, M.R.K. Mofrad: Molecular dynamics study of talin-vinculin binding, Biophys. J. 95(4), 2027–2036 (2008)

    Article  Google Scholar 

  103. S.E. Lee, R.D. Kamm, M.R. Mofrad: Force-induced activation of talin and its possible role in focal adhesion mechanotransduction, J. Biomech. 40(9), 2096–2106 (2007)

    Article  Google Scholar 

  104. M.R.K. Mofrad, J. GoljiJ, N.A. Abdul-Rahim, R.D. Kamm: Force-induced unfolding of the focal adhesion targeting domain and the influence of paxillin binding, Mech. Chem. Biosyst. 1(4), 253–265 (2004)

    Google Scholar 

  105. J. Golji, R. Collins, M.R. Mofrad: Molecular mechanics of the α-actinin rod domain: Bending, torsional, and extensional behavior, PLoS Comput. Biol. 5(5), e1000389 (2009)

    Article  Google Scholar 

  106. K.S. Kolahi, M.R. Mofrad: Molecular mechanics of filaminʼs rod domain, Biophys. J. 94(3), 1075–1083 (2008)

    Article  Google Scholar 

  107. B. Patel, A.R. Gingras, A.A. Bobkov, L.M. Fujimoto, M. Zhang, R.C. Liddington, D. Mazzeo, J. Emsley, G.C.K. Roberts, I.L. Barsukov, D.R. Critchley: The activity of the vinculin binding sites in talin is influenced by the stability of the helical bundles that make up the talin rod, J. Biol. Chem. 281(11), 7458–7467 (2006)

    Article  Google Scholar 

  108. V.P. Hytönen, V. Vogel: How force might activate talinʼs vinculin binding sites: SMD reveals a structural mechanism, PLoS Comput. Biol. 4(2), E24 (2008)

    Article  Google Scholar 

  109. D.J. Odde, L. Ma, A.H. Briggs, A. DeMarco, M.W. Kirschner: Microtubule bending and breaking in living fibroblast cells, J. Cell Sci. 112(19), 3283–3288 (1999)

    Google Scholar 

  110. G. Chang, R.H. Spencer, A.T. Lee, M.T. Barclay, D.C. Rees: Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel, Science 282(5397), 2220–2226 (1998)

    Article  Google Scholar 

  111. O.P. Hamill, B. Martinac: Molecular basis of mechanotransduction in living cells, Physiol. Rev. 81(2), 685–740 (2001)

    Google Scholar 

  112. J. Gullingsrud, D. Kosztin, K. Schulten: Structural determinants of MscL gating studied by molecular dynamics simulations, Biophys. J. 80(5), 2074–2081 (2001)

    Article  Google Scholar 

  113. J.M. Ferrer, H. Lee, J. Chen, B. Pelz, F. Nakamura, R.D. Kamm, M.J. Lang: Measuring molecular rupture forces between single actin filaments and actin-binding proteins, Proc. Natl. Acad. Sci. USA 105(27), 9221–9226 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roger Kamm , Jan Lammerding or Mohammad Mofrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Kamm, R., Lammerding, J., Mofrad, M. (2010). Cellular Nanomechanics. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics