Skip to main content

Introduction to Carbon Nanotubes

  • Chapter
Springer Handbook of Nanotechnology

Abstract

Carbon nanotubes are remarkable objects that look set to revolutionize the technological landscape in the near future. Tomorrowʼs society will be shaped by nanotube applications, just as silicon-based technologies dominate society today. Space elevators tethered by the strongest of cables; hydrogen-powered vehicles; artificial muscles: these are just a few of the technological marvels that may be made possible by the emerging science of carbon nanotubes.

Of course, this prediction is still some way from becoming reality; we are still at the stage of evaluating possibilities and potential. Consider the recent example of fullerenes – molecules closely related to nanotubes. The anticipation surrounding these molecules, first reported in 1985, resulted in the bestowment of a Nobel Prize for their discovery in 1996. However, a decade later, few applications of fullerenes have reached the market, suggesting that similarly enthusiastic predictions about nanotubes should be approached with caution.

There is no denying, however, that the expectations surrounding carbon nanotubes are very high. One of the main reasons for this is the anticipated application of nanotubes to electronics. Many believe that current techniques for miniaturizing microchips are about to reach their lowest limits, and that nanotube-based technologies are the best hope for further miniaturization. Carbon nanotubes may therefore provide the building blocks for further technological progress, enhancing our standards of living.

In this chapter, we first describe the structures, syntheses, growth mechanisms and properties of carbon nanotubes. Then we discuss nanotube-related nano-objects, including those formed by reactions and associations of all-carbon nanotubes with foreign atoms, molecules and compounds, which may provide the path to hybrid materials with even better properties than pristine nanotubes. Finally, we will describe the most important current and potential applications of carbon nanotubes, which suggest that the future for the carbon nanotube industry looks very promising indeed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

alternating-current

AC:

amorphous carbon

AFM:

atomic force microscope

AFM:

atomic force microscopy

BSA:

bovine serum albumin

CCVD:

catalytic chemical vapor deposition

CNT:

carbon nanotube

CTE:

coefficient of thermal expansion

CVD:

chemical vapor deposition

DNA:

deoxyribonucleic acid

EDC:

1-ethyl-3-(3-diamethylaminopropyl) carbodiimide

FET:

field-effect transistor

HP:

hot-pressing

HRTEM:

high-resolution transmission electron microscope

IFN:

interferon

MWNT:

multiwall nanotube

ODA:

octadecylamine

PAH:

poly(allylamine hydrochloride)

PMMA:

poly(methyl methacrylate)

ROS:

reactive oxygen species

SPM:

scanning probe microscope

SPM:

scanning probe microscopy

SPS:

spark plasma sintering

SWNT:

single wall nanotube

SWNT:

single-wall nanotube

TEM:

transmission electron microscope

TEM:

transmission electron microscopy

TGA:

thermogravimetric analysis

TV:

television

References

  1. M. Monthioux, V.L. Kuznetsov: Who should be given the credit for the discovery of carbon nanotubes?, Carbon 44, 1621–1623 (2006)

    Article  Google Scholar 

  2. L.V. Radushkevich, V.M. Lukyanovich: O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte, Zurn. Fis. Chim. 26, 88–95 (1952), in Russian

    Google Scholar 

  3. T.V. Hughes, C.R. Chambers: Manufacture of Carbon Filaments, US Patent 405480 (1889)

    Google Scholar 

  4. P. Schützenberger, L. Schützenberger: Sur quelques faits relatifs à lʼhistoire du carbone, C. R. Acad. Sci. Paris 111, 774–778 (1890), in French

    Google Scholar 

  5. C. Pélabon, H. Pélabon: Sur une variété de carbone filamenteux, C. R. Acad. Sci. Paris 137, 706–708 (1903), in French

    Google Scholar 

  6. R.T.K. Baker, P.S. Harris: The formation of filamentous carbon. In: Chemistry and Physics of Carbon, Vol. 14, ed. by P.L. Walker Jr., P.A. Thrower (Dekker, New York 1978) pp. 83–165

    Google Scholar 

  7. S. Iijima: Helical microtubules of graphite carbon, Nature 354, 56–58 (1991)

    Article  Google Scholar 

  8. S. Iijima, T. Ichihashi: Single-shell carbon nanotubes of 1 nm diameter, Nature 363, 603–605 (1993)

    Article  Google Scholar 

  9. D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Bayers: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363, 605–607 (1993)

    Article  Google Scholar 

  10. J. Tersoff, R.S. Ruoff: Structural properties of a carbon-nanotube crystal, Phys. Rev. Lett. 73, 676–679 (1994)

    Article  Google Scholar 

  11. N. Wang, Z.K. Tang, G.D. Li, J.S. Chen: Single-walled 4 Å carbon nanotube arrays, Nature 408, 50–51 (2000)

    Article  Google Scholar 

  12. N. Hamada, S.I. Sawada, A. Oshiyama: New one-dimensional conductors, graphite microtubules, Phys. Rev. Lett. 68, 1579–1581 (1992)

    Article  Google Scholar 

  13. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund: Science of Fullerenes and Carbon Nanotubes (Academic, San Diego 1995)

    Google Scholar 

  14. R.C. Haddon: Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules, Science 261, 1545–1550 (1993)

    Article  Google Scholar 

  15. M. Monthioux, B.W. Smith, B. Burteaux, A. Claye, J. Fisher, D.E. Luzzi: Sensitivity of single-wall nanotubes to chemical processing: An electron microscopy investigation, Carbon 39, 1261–1272 (2001)

    Article  Google Scholar 

  16. H. Allouche, M. Monthioux: Chemical vapor deposition of pyrolytic carbon onto carbon nanotubes. Part II – Structure and texture, Carbon 43, 1265–1278 (2005)

    Article  Google Scholar 

  17. M. Audier, A. Oberlin, M. Oberlin, M. Coulon, L. Bonnetain: Morphology and crystalline order in catalytic carbons, Carbon 19, 217–224 (1981)

    Article  Google Scholar 

  18. Y. Saito: Nanoparticles and filled nanocapsules, Carbon 33, 979–988 (1995)

    Article  Google Scholar 

  19. P.J.F. Harris: Carbon Nanotubes and Related Structures (Cambridge Univ. Press, Cambridge 1999)

    Book  Google Scholar 

  20. N.M. Rodriguez, A. Chambers, R.T. Baker: Catalytic engineering of carbon nanostructures, Langmuir 11, 3862–3866 (1995)

    Article  Google Scholar 

  21. M. Monthioux, L. Noé, L. Dussault, J.-C. Dupin, N. Latorre, T. Ubieto, E. Romeo, C. Royo, A. Monzón, C. Guimon: Texturising and structurising mechanisms of carbon nanofilament during growth, J. Mater. Chem. 17, 4611–4618 (2007)

    Article  Google Scholar 

  22. J. Vera-Agullo, H. Varela-Rizo, J.A. Conesa, C. Almansa, C. Merino, I. Martin-Gullon: Evidence for growth mechanism and helix-spiral cone structure of stacked-cup carbon nanofibers, Carbon 45, 2751–2758 (2007)

    Article  Google Scholar 

  23. H.W. Kroto, J.R. Heath, S.C. OʼBrien, R.F. Curl, R.E. Smalley: C_60 Buckminsterfullerene, Nature 318, 162–163 (1985)

    Article  Google Scholar 

  24. W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman: Solid C_60: A new form of carbon, Nature 347, 354–358 (1990)

    Article  Google Scholar 

  25. L. Fulchieri, Y. Schwob, F. Fabry, G. Flamant, L.F.P. Chibante, D. Laplaze: Fullerene production in a 3-phase AC plasma process, Carbon 38, 797–803 (2000)

    Article  Google Scholar 

  26. K. Saidane, M. Razafinimanana, H. Lange, A. Huczko, M. Baltas, A. Gleizes, J.L. Meunier: Fullerene synthesis in the graphite electrode arc process: local plasma characteristics and correlation with yield, J. Phys. D Appl. Phys. 37, 232–239 (2004)

    Article  Google Scholar 

  27. T. Guo, P. Nikolaev, A.G. Rinzler, D. Tomanek, D.T. Colbert, R.E. Smalley: Self-assembly of tubular fullerenes, J. Phys. Chem. 99, 10694–10697 (1995)

    Article  Google Scholar 

  28. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley: Catalytic growth of single-walled nanotubes by laser vaporisation, Chem. Phys. Lett. 243, 49–54 (1995)

    Article  Google Scholar 

  29. A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E. Smalley: Large scale purification of single wall carbon nanotubes: Process, product and characterization, Appl. Phys. A 67, 29–37 (1998)

    Article  Google Scholar 

  30. L.M. Chapelle, J. Gavillet, J.L. Cochon, M. Ory, S. Lefrant, A. Loiseau, D. Pigache: A continuous wave CO_2 laser reactor for nanotube synthesis, Proc. Electron. Prop. Nov. Mater. – XVI Int. Wintersch. – AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 1999) pp. 237–240

    Google Scholar 

  31. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, D.T. Colbert, G. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley: Crystalline ropes of metallic carbon nanotubes, Science 273, 487–493 (1996)

    Article  Google Scholar 

  32. M. Yudasaka, T. Komatsu, T. Ichihashi, S. Iijima: Single wall carbon nanotube formation by laser ablation using double targets of carbon and metal, Chem. Phys. Lett. 278, 102–106 (1997)

    Article  Google Scholar 

  33. M. Castignolles, A. Foutel-Richard, A. Mavel, J.L. Cochon, D. Pigache, A. Loiseau, P. Bernier: Combined experimental and numerical study of the parameters controlling the C-SWNT synthesis via laser vaporization, Proc. Electron. Prop. Nov. Mater. – XVI Int. Wintersch. – AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2002) pp. 385–389

    Chapter  Google Scholar 

  34. T.W. Ebbesen, P.M. Ajayan: Large-scale synthesis of carbon nanotubes, Nature 358, 220–221 (1992)

    Article  Google Scholar 

  35. D. Ugarte: Morphology and structure of graphitic soot particles generated in arc-discharge C_60 production, Chem. Phys. Lett. 198, 596–602 (1992)

    Article  Google Scholar 

  36. T.W. Ebbesen: Carbon nanotubes, Ann. Rev. Mater. Sci. 24, 235–264 (1994)

    Article  Google Scholar 

  37. T. Beltz, J. Find, D. Herein, N. Pfänder, T. Rühle, H. Werner, M. Wohlers, R. Schlögl: On the production of different carbon forms by electric arc graphite evaporation, Ber. Bunsen. Phys. Chem. 101, 712–725 (1997)

    Article  Google Scholar 

  38. C. Journet, W.K. Maser, P. Bernier, A. Loiseau, L.M. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fischer: Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature 388, 756–758 (1997)

    Article  Google Scholar 

  39. K. Saïdane, M. Razafinimanana, H. Lange, M. Baltas, A. Gleizes, J.J. Gonzalez: Influence of the carbon arc current intensity on fullerene synthesis, Proc. 24th Int. Conf. Phenom. Ioniz. Gases, ed. by P. Pisarczyk, T. Pisarczyk, J. Wotowski (Institute of Plasma Physics and Laser Microfusion, Warsaw 1999) pp. 203–204

    Google Scholar 

  40. H. Allouche, M. Monthioux, M. Pacheco, M. Razafinimanana, H. Lange, A. Huczko, T.P. Teulet, A. Gleizes, T. Sogabe: Physical characteristics of the graphite-electrode electric-arc as parameters for the formation of single-wall carbon nanotubes, Proc. Eurocarbon, Vol. 2 (Deutsche Keramische Gesellschaft, 2000) pp. 1053–1054

    Google Scholar 

  41. M. Razafinimanana, M. Pacheco, M. Monthioux, H. Allouche, H. Lange, A. Huczko, A. Gleizes: Spectroscopic study of an electric arc with Gd and Fe doped anodes for the carbon nanotube formation, Proc. 25th Int. Conf. Phenom. Ioniz. Gases, ed. by E. Goto (Nagoya Univ., Nagoya 2001) pp. 297–298

    Google Scholar 

  42. M. Razafinimanana, M. Pacheco, M. Monthioux, H. Allouche, H. Lange, A. Huczko, P. Teulet, A. Gleizes, C. Goze, P. Bernier, T. Sogabe: Influence of doped graphite electrode in electric arc for the formation of single wall carbon nanotubes, Proc. 6th Eur. Conf. Therm. Plasma Process. – Prog. Plasma Process. Mater., New York 2000, ed. by P. Fauchais (Begell House, New York 2001) pp. 649–654

    Google Scholar 

  43. M. Pacheco, H. Allouche, M. Monthioux, A. Razafinimanana, A. Gleizes: Correlation between the plasma characteristics and the morphology and structure of the carbon phases synthesised by electric arc discharge, Proc. 25th Bienn. Conf. Carbon, Lexington 2001, ed. by F. Derbyshire (American Carbon Society 2001), Extend. Abstr. (CD-ROM), Novel/14.1

    Google Scholar 

  44. M. Pacheco, M. Monthioux, M. Razafinimanana, L. Donadieu, H. Allouche, N. Caprais, A. Gleizes: New factors controlling the formation of single-wall carbon nanotubes by arc plasma, Proc. Carbon 2002 Int. Conf., Beijing 2002, ed. by H.-M. Cheng (Shanxi Chunqiu Audio-Visual Press, Beijing 2002), CD-ROM/Oral/I014

    Google Scholar 

  45. M. Monthioux, M. Pacheco, H. Allouche, M. Razafinimanana, N. Caprais, L. Donnadieu, A. Gleizes: New data about the formation of SWNTs by the electric arc method. In: Electronic Properties of Molecular Nanostructures, AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2002) pp. 182–185

    Google Scholar 

  46. H. Lange, A. Huczko, M. Sioda, M. Pacheco, M. Razafinimanana, A. Gleizes: Influence of gadolinium on carbon arc plasma and formation of fullerenes and nanotubes, Plasma Chem. Plasma Process 22, 523–536 (2002)

    Article  Google Scholar 

  47. C. Journet: La production de nanotubes de carbone. Ph.D. Thesis (University of Montpellier II, Montpellier 1998)

    Google Scholar 

  48. T. Sogabe, T. Masuda, K. Kuroda, Y. Hirohaya, T. Hino, T. Ymashina: Preparation of B_4C-mixed graphite by pressureless sintering and its air oxidation behavior, Carbon 33, 1783–1788 (1995)

    Article  Google Scholar 

  49. M. Ishigami, J. Cumings, A. Zettl, S. Chen: A simple method for the continuous production of carbon nanotubes, Chem. Phys. Lett. 319, 457–459 (2000)

    Article  Google Scholar 

  50. Y.L. Hsin, K.C. Hwang, F.R. Chen, J.J. Kai: Production and in-situ metal filling of carbon nanotube in water, Adv. Mater. 13, 830–833 (2001)

    Article  Google Scholar 

  51. H.W. Zhu, X.S. Li, B. Jiang, C.L. Xu, C.L. Zhu, Y.F. Zhu, D.H. Wu, X.H. Chen: Formation of carbon nanotubes in water by the electric arc technique, Chem. Phys. Lett. 366, 664–669 (2002)

    Article  Google Scholar 

  52. W.K. Maser, P. Bernier, J.M. Lambert, O. Stephan, P.M. Ajayan, C. Colliex, V. Brotons, J.M. Planeix, B. Coq, P. Molinie, S. Lefrant: Elaboration and characterization of various carbon nanostructures, Synth. Met. 81, 243–250 (1996)

    Article  Google Scholar 

  53. A. Mansour, M. Razafinimanana, M. Monthioux, M. Pacheco, A. Gleizes: A significant improvement of both yield and purity during SWCNT synthesis via the electric arc process, Carbon 45, 1651–1661 (2007)

    Article  Google Scholar 

  54. A. Mansour: Caractérisation expérimentale dʼun plasma dʼarc électrique en vue du contrôle de la synthèse des nanotubes de carbone monoparois. Ph.D. Thesis (University Paul Sabatier, Toulouse 2007)

    Google Scholar 

  55. J. Gavillet, A. Loiseau, J. Thibault, A. Maigné, O. Stéphan, P. Bernier: TEM study of the influence of the catalyst composition on the formation and growth of SWNT, Proc. Electron. Prop. Nov. Mater. – XVI Int. Wintersch. – AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2002) pp. 202–206

    Chapter  Google Scholar 

  56. G. Flamant, J.F. Robert, S. Marty, J.M. Gineste, J. Giral, B. Rivoire, D. Laplaze: Solar reactor scaling up. The fullerene synthesis case study, Energy 29, 801–809 (2004)

    Article  Google Scholar 

  57. T.M. Gruenberger, J. Gonzalez-Aguilar, F. Fabry, L. Fulchieri, E. Grivei, N. Probst, G. Flamant, H. Okuno, J.C. Charlier: Production of carbon nanotubes and other nanostructures via continuous 3-phase AC plasma processing, Fuller. Nanotub. Carbon Nanostruct. 12, 571–581 (2004)

    Article  Google Scholar 

  58. H. Okuno, E. Grivel, F. Fabry, T.M. Gruenberger, J.J. Gonzalez-Aguilar, A. Palnichenko, L. Fulchieri, N. Probst, J.C. Chalier: Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process, Carbon 42, 2543–2549 (2004)

    Article  Google Scholar 

  59. L.P.F. Chibante, A. Thess, J.M. Alford, M.D. Diener, R.E. Smalley: Solar generation of the fullerenes, J. Phys. Chem. 97, 8696–8700 (1993)

    Article  Google Scholar 

  60. C.L. Fields, J.R. Pitts, M.J. Hale, C. Bingham, A. Lewandowski, D.E. King: Formation of fullerenes in highly concentrated solar flux, J. Phys. Chem. 97, 8701–8702 (1993)

    Article  Google Scholar 

  61. P. Bernier, D. Laplaze, J. Auriol, L. Barbedette, G. Flamant, M. Lebrun, A. Brunelle, S. Della-Negra: Production of fullerenes from solar energy, Synth. Met. 70, 1455–1456 (1995)

    Article  Google Scholar 

  62. M.J. Heben, T.A. Bekkedhal, D.L. Schultz, K.M. Jones, A.C. Dillon, C.J. Curtis, C. Bingham, J.R. Pitts, A. Lewandowski, C.L. Fields: Production of single wall carbon nanotubes using concentrated sunlight, Proc. Symp. Recent Adv. Chem. Phys. Fuller. Rel. Mater., Pennington 1996, ed. by K.M. Kadish, R.S. Ruoff (Electrochemical Society, Pennington 1996) pp. 803–811

    Google Scholar 

  63. D. Laplaze, P. Bernier, C. Journet, G. Vié, G. Flamant, E. Philippot, M. Lebrun: Evaporation of graphite using a solar furnace, Proc. 8th Int. Symp. Solar Conc. Technol., Köln 1996, ed. by M. Becker, M. Balmer (Müller, Heidelberg 1997) pp. 1653–1656

    Google Scholar 

  64. D. Laplaze, P. Bernier, W.K. Maser, G. Flamant, T. Guillard, A. Loiseau: Carbon nanotubes: The solar approach, Carbon 36, 685–688 (1998)

    Article  Google Scholar 

  65. T. Guillard, S. Cetout, L. Alvarez, J.L. Sauvajol, E. Anglaret, P. Bernier, G. Flamant, D. Laplaze: Production of carbon nanotubes by the solar route, Eur. Phys. J. 5, 251–256 (1999)

    Article  Google Scholar 

  66. D. Luxembourg, G. Flamant, A. Guillot, D. Laplaze: Hydrogen storage in solar produced single-walled carbon nanotubes, Mater. Sci. Eng. B 108, 114–119 (2004)

    Article  Google Scholar 

  67. G. Flamant, M. Bijeire, D. Luxembourg: Modelling of a solar reactor for single wall nanotubes synthesis, ASME J. Solar Energy Eng. 128, 1–124 (2006)

    Article  Google Scholar 

  68. G.G. Tibbetts, M. Endo, C.P. Beetz: Carbon fibers grown from the vapor phase: A novel material, SAMPE Journal 22, 30 (1989)

    Google Scholar 

  69. R.T.K. Baker: Catalytic growth of carbon filaments, Carbon 27, 315–323 (1989)

    Article  Google Scholar 

  70. E. Lamouroux, P. Serp, P. Kalck: Catalytic chemical vapor deposition routes towards single-walled and double-walled carbon nanotubes, Catal. Rev. Sci. Eng. 49, 341–405 (2007)

    Article  Google Scholar 

  71. R. Philippe, A. Morançais, M. Corrias, B. Caussat, Y. Kihn, P. Kalck, D. Plee, P. Gaillard, D. Bernard, P. Serp: Catalytic production of carbon nanotubes by fluidized-bed CVD, Chem. Vap. Depos. 13, 447–457 (2007)

    Article  Google Scholar 

  72. R.T.K. Baker, P.S. Harris, R.B. Thomas, R.J. Waite: Formation of filamentous carbon from iron, cobalt, and chromium catalyzed decomposition of acetylene, J. Catal. 30, 86–95 (1973)

    Article  Google Scholar 

  73. T. Koyama, M. Endo, Y. Oyuma: Carbon fibers obtained by thermal decomposition of vaporized hydrocarbon, Jpn. J. Appl. Phys. 11, 445–449 (1972)

    Article  Google Scholar 

  74. M. Endo, A. Oberlin, T. Koyama: High resolution electron microscopy of graphitizable carbon fiber prepared by benzene decomposition, Jpn. J. Appl. Phys. 16, 1519–1523 (1977)

    Article  Google Scholar 

  75. N.M. Rodriguez: A review of catalytically grown carbon nanofibers, J. Mater. Res. 8, 3233–3250 (1993)

    Article  Google Scholar 

  76. W.R. Davis, R.J. Slawson, G.R. Rigby: An unusual form of carbon, Nature 171, 756 (1953)

    Article  Google Scholar 

  77. H.P. Boehm: Carbon from carbon monoxide disproportionation on nickel and iron catalysts; morphological studies and possible growth mechanisms, Carbon 11, 583–590 (1973)

    Article  Google Scholar 

  78. M. Audier, A. Oberlin, M. Coulon: Crystallographic orientations of catalytic particles in filamentous carbon; case of simple conical particles, J. Cryst. Growth 55, 546–549 (1981)

    Article  Google Scholar 

  79. M. Audier, M. Coulon: Kinetic and microscopic aspects of catalytic carbon growth, Carbon 23, 317–323 (1985)

    Article  Google Scholar 

  80. M. Audier, A. Oberlin, M. Coulon: Study of biconic microcrystals in the middle of carbon tubes obtained by catalytic disproportionation of CO, J. Cryst. Growth 57, 524–534 (1981)

    Article  Google Scholar 

  81. A. Thaib, G.A. Martin, P. Pinheiro, M.C. Schouler, P. Gadelle: Formation of carbon nanotubes from the carbon monoxide disproportionation reaction over Co/Al_2O_3 and Co/SiO_2 catalysts, Catal. Lett. 63, 135–141 (1999)

    Article  Google Scholar 

  82. P. Pinheiro, M.C. Schouler, P. Gadelle, M. Mermoux, E. Dooryhée: Effect of hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co/Al_2O_3 catalysts, Carbon 38, 1469–1479 (2000)

    Article  Google Scholar 

  83. P. Pinheiro, P. Gadelle: Chemical state of a supported iron-cobalt catalyst during CO disproportionation. I. Thermodynamic study, J. Phys. Chem. Solids 62, 1015–1021 (2001)

    Article  Google Scholar 

  84. P. Pinheiro, P. Gadelle, C. Jeandey, J.L. Oddou: Chemical state of a supported iron-cobalt catalyst during CO disproportionation. II. Experimental study, J. Phys. Chem. Solids 62, 1023–1037 (2001)

    Article  Google Scholar 

  85. C. Laurent, E. Flahaut, A. Peigney, A. Rousset: Metal nanoparticles for the catalytic synthesis of carbon nanotubes, New J. Chem. 22, 1229–1237 (1998)

    Article  Google Scholar 

  86. E. Flahaut: Synthèse par voir catalytique et caractérisation de composites nanotubes de carbone-metal-oxyde Poudres et matériaux denses. Ph.D. Thesis (Univers. Paul Sabatier, Toulouse 1999)

    Google Scholar 

  87. E. Flahaut, R. Bacsa, A. Peigney, C. Laurent: Gram-scale CCVD synthesis of double-walled carbon nanotubes, Chem. Commun., 1442–1443 (2003)

    Google Scholar 

  88. A. Peigney, C. Laurent, F. Dobigeon, A. Rousset: Carbon nanotubes grown in situ by a novel catalytic method, J. Mater. Res. 12, 613–615 (1997)

    Article  Google Scholar 

  89. V. Ivanov, J.B. Nagy, P. Lambin, A. Lucas, X.B. Zhang, X.F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, J. Van Landuyt: The study of nanotubules produced by catalytic method, Chem. Phys. Lett. 223, 329–335 (1994)

    Article  Google Scholar 

  90. V. Ivanov, A. Fonseca, J.B. Nagy, A. Lucas, P. Lambin, D. Bernaerts, X.B. Zhang: Catalytic production and purification of nanotubules having fullerene-scale diameters, Carbon 33, 1727–1738 (1995)

    Article  Google Scholar 

  91. K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, A. Fudala, A. Lucas: Catalytic synthesis of carbon nanotubes using zeolite support, Zeolites 17, 416–423 (1996)

    Article  Google Scholar 

  92. H. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley: Single-wall nanotubes produced by metal-catalysed disproportionation of carbon monoxide, Chem. Phys. Lett. 260, 471–475 (1996)

    Article  Google Scholar 

  93. A.M. Cassel, J.A. Raymakers, J. Kong, H. Dai: Large scale CVD synthesis of single-walled carbon nanotubes, J. Phys. Chem. B 109, 6484–6492 (1999)

    Article  Google Scholar 

  94. B. Kitiyanan, W.E. Alvarez, J.H. Harwell, D.E. Resasco: Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts, Chem. Phys. Lett. 317, 497–503 (2000)

    Article  Google Scholar 

  95. A. Govindaraj, E. Flahaut, C. Laurent, A. Peigney, A. Rousset, C.N.R. Rao: An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg_1-xM_xAl_2O_4 spinel catalysts, J. Mater. Res. 14, 2567–2576 (1999)

    Article  Google Scholar 

  96. E. Flahaut, A. Peigney, C. Laurent, A. Rousset: Synthesis of single-walled carbon nanotube-Co-MgO composite powders and extraction of the nanotubes, J. Mater. Chem. 10, 249–252 (2000)

    Article  Google Scholar 

  97. J. Kong, A.M. Cassel, H. Dai: Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem. Phys. Lett. 292, 567–574 (1998)

    Article  Google Scholar 

  98. E. Flahaut, A. Peigney, W.S. Bacsa, R.R. Bacsa, C. Laurent: CCVD synthesis of carbon nanotubes from (Mg,Co, Mo)O catalysts: Influence of the proportions of cobalt and molybdenum, J. Mater. Chem. 14, 646–653 (2004)

    Article  Google Scholar 

  99. E. Flahaut, C. Laurent, A. Peigney: Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation, Carbon 43, 375–383 (2005)

    Article  Google Scholar 

  100. R. Marangoni, P. Serp, R. Feurrer, Y. Kihn, P. Kalck, C. Vahlas: Carbon nanotubes produced by substrate free metalorganic chemical vapor deposition of iron catalyst and ethylene, Carbon 39, 443–449 (2001)

    Article  Google Scholar 

  101. R. Sen, A. Govindaraj, C.N.R. Rao: Carbon nanotubes by the metallocene route, Chem. Phys. Lett. 267, 276–280 (1997)

    Article  Google Scholar 

  102. Y.Y. Fan, H.M. Cheng, Y.L. Wei, G. Su, S.H. Shen: The influence of preparation parameters on the mass production of vapor grown carbon nanofibers, Carbon 38, 789–795 (2000)

    Article  Google Scholar 

  103. L. Ci, J. Wei, B. Wei, J. Liang, C. Xu, D. Wu: Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method, Carbon 39, 329–335 (2001)

    Article  Google Scholar 

  104. M. Glerup, H. Kanzow, R. Almairac, M. Castignolles, P. Bernier: Synthesis of multi-walled carbon nanotubes and nano-fibres using aerosol method with metal-ions as the catalyst precursors, Chem. Phys. Lett. 377, 293–298 (2003)

    Article  Google Scholar 

  105. O.A. Nerushev, M. Sveningsson, L.K.L. Falk, F. Rohmund: Carbon nanotube films obtained by thermal vapour deposition, J. Mater. Chem. 11, 1122–1132 (2001)

    Article  Google Scholar 

  106. Z. Zhou, L. Ci, L. Song, X. Yan, D. Liu, H. Yuan, Y. Gao, J. Wang, L. Liu, W. Zhou, G. Wang, S. Xie: Producing cleaner double-walled carbon nanotubes in a floating catalyst system, Carbon 41, 2607–2611 (2003)

    Article  Google Scholar 

  107. F. Rohmund, L.K.L. Falk, F.E.B. Campbell: A simple method for the production of large arrays of aligned carbon nanotubes, Chem. Phys. Lett. 328, 369–373 (2000)

    Article  Google Scholar 

  108. G.G. Tibbetts, C.A. Bernardo, D.W. Gorkiewicz, R.L. Alig: Role of sulfur in the production of carbon fibers in the vapor phase, Carbon 32, 569–576 (1994)

    Article  Google Scholar 

  109. S. Bai, F. Li, Q.H. Yang, H.-M. Cheng, J.B. Bai: Influence of ferrocene/benzene mole ratio in the synthesis of carbon nanostructures, Chem. Phys. Lett. 376, 83–89 (2003)

    Article  Google Scholar 

  110. W.Q. Han, P. Kholer-Riedlich, T. Seeger, F. Ernst, M. Ruhle, N. Grobert, W.K. Hsu, B.H. Chang, Y.Q. Zhu, H.W. Kroto, M. Terrones, H. Terrones: Aligned CN_x nanotubes by pyrolysis of ferrocene under NH_3 atmosphere, Appl. Phys. Lett. 77, 1807–1809 (2000)

    Article  Google Scholar 

  111. L. Ci, Z. Rao, Z. Zhou, D. Tang, X. Yan, Y. Liang, D. Liu, H. Yuan, W. Zhou, G. Wang, W. Liu, S. Xie: Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system, Chem. Phys. Lett. 359, 63–67 (2002)

    Article  Google Scholar 

  112. S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett. 360, 229–234 (2002)

    Article  Google Scholar 

  113. T. Kyotani, L.F. Tsai, A. Tomita: Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film, Chem. Mater. 8, 2109–2113 (1996)

    Article  Google Scholar 

  114. E. Mora, T. Tokune, A.R. Harutyunyan: Continuous production of single-walled carbon nanotubes using a supported floating catalyst, Carbon 45, 971–977 (2007)

    Article  Google Scholar 

  115. R.E. Smalley, J.H. Hafner, D.T. Colbert, K. Smith: Catalytic growth of single-wall carbon nanotubes from metal particles, US Patent 19980601010903 (1998)

    Google Scholar 

  116. P. Nikolaev: Gas-phase production of single-walled carbon nanotubes from carbon monoxide: A review of the HiPco process, J. Nanosci. Nanotechnol. 4, 307–316 (2004)

    Article  Google Scholar 

  117. W.K. Hsu, J.P. Hare, M. Terrones, H.W. Kroto, D.R.M. Walton, P.J.F. Harris: Condensed-phase nanotubes, Nature 377, 687 (1995)

    Article  Google Scholar 

  118. W.S. Cho, E. Hamada, Y. Kondo, K. Takayanagi: Synthesis of carbon nanotubes from bulk polymer, Appl. Phys. Lett. 69, 278–279 (1996)

    Article  Google Scholar 

  119. Y.L. Li, Y.D. Yu, Y. Liang: A novel method for synthesis of carbon nanotubes: Low temperature solid pyrolysis, J. Mater. Res. 12, 1678–1680 (1997)

    Article  Google Scholar 

  120. M.L. Terranova, S. Piccirillo, V. Sessa, P. Sbornicchia, M. Rossi, S. Botti, D. Manno: Growth of single-walled carbon nanotubes by a novel technique using nanosized graphite as carbon source, Chem. Phys. Lett. 327, 284–290 (2000)

    Article  Google Scholar 

  121. R.L. Vander Wal, T. Ticich, V.E. Curtis: Diffusion flame synthesis of single-walled carbon nanotubes, Chem. Phys. Lett. 323, 217–223 (2000)

    Article  Google Scholar 

  122. I. Gunjishima, T. Inoue, S. Yamamuro, K. Sumiyama, A. Okamoto: Synthesis of vertically aligned, double-walled carbon nanotubes from highly active Fe-V-O nanoparticles, Carbon 45, 1193–1199 (2007)

    Article  Google Scholar 

  123. G. Zhong, T. Iwasaki, J. Robertson, H. Kawarada: Growth kinetics of 0.5 cm vertically aligned single-walled carbon nanotubes, J. Phys. Chem. B 111, 1907–1910 (2007)

    Article  Google Scholar 

  124. H. Cui, G. Eres, J.Y. Howe, A. Puretzki, M. Varela, D.B. Geohegan, D.H. Lowndes: Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition, Chem. Phys. Lett. 374, 222–228 (2003)

    Article  Google Scholar 

  125. A.M. Cassel, N.R. Franklin, T.W. Tombler, E.M. Chan, J. Han, H. Dai: Directed growth of free-standing single-walled carbon nanotubes, J. Am. Chem. Soc. 121, 7975–7976 (1999)

    Article  Google Scholar 

  126. S. Fan, M. Chapline, N. Franklin, T. Tombler, A.M. Cassel, H. Dai: Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283, 512–514 (1999)

    Article  Google Scholar 

  127. Y.Y. Wei, G. Eres, V.I. Merkulov, D.H. Lowdens: Effect of film thickness on carbon nanotube growth by selective area chemical vapor deposition, Appl. Phys. Lett. 78, 1394–1396 (2001)

    Article  Google Scholar 

  128. I.T. Han, B.K. Kim, H.J. Kim, M. Yang, Y.W. Jin, S. Jung, N. Lee, S.K. Kim, J.M. Kim: Effect of Al and catalyst thickness on the growth of carbon nanotubes and application to gated field emitter arrays, Chem. Phys. Lett. 400, 139–144 (2004)

    Article  Google Scholar 

  129. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zha, G. Wang: Large scale synthesis of aligned carbon nanotubes, Science 274, 1701–1703 (1996)

    Article  Google Scholar 

  130. F. Zheng, L. Liang, Y. Gao, J.H. Sukamto, L. Aardahl: Carbon nanotubes synthesis using mesoporous silica templates, Nano Lett. 2, 729–732 (2002)

    Article  Google Scholar 

  131. S.H. Jeong, O.-K. Lee, K.H. Lee, S.H. Oh, C.G. Park: Preparation of aligned carbon nanotubes with prescribed dimension: Template synthesis and sonication cutting approach, Chem. Mater. 14, 1859–1862 (2002)

    Article  Google Scholar 

  132. N.S. Kim, Y.T. Lee, J. Park, H. Ryu, H.J. Lee, S.Y. Choi, J. Choo: Dependence of vertically aligned growth of carbon nanotubes on catalyst, J. Phys. Chem. B 106, 9286–9290 (2002)

    Article  Google Scholar 

  133. C.J. Lee, D.W. Kim, T.J. Lee, Y.C. Choi, Y.S. Park, Y.H. Lee, W.B. Choi, N.S. Lee, G.-S. Park, J.M. Kim: Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition, Chem. Phys. Lett. 312, 461–468 (1999)

    Article  Google Scholar 

  134. W.D. Zhang, Y. Wen, S.M. Liu, W.C. Tjiu, G.Q. Xu, L.M. Gan: Synthesis of vertically aligned carbon nanotubes on metal deposited quartz plates, Carbon 40, 1981–1989 (2002)

    Article  Google Scholar 

  135. S. Huang, L. Dai, A.W.H. Mau: Controlled fabrication of large scale aligned carbon nanofiber/nanotube patterns by photolithography, Adv. Mater. 14, 1140–1143 (2002)

    Article  Google Scholar 

  136. T. Sun, G. Wang, H. Liu, L. Feng, D. Zhu: Control over the wettability of an aligned carbon nanotube film, J. Am. Chem. Soc. 125, 14996–14997 (2003)

    Article  Google Scholar 

  137. Y. Huh, J.Y. Lee, J. Cheon, Y.K. Hong, J.Y. Koo, T.J. Lee, C.J. Lee: Controlled growth of carbon nanotubes over cobalt nanoparticles by thermal chemical vapor deposition, J. Mater. Chem. 13, 2297–2300 (2003)

    Article  Google Scholar 

  138. Y. Kobayashi, H. Nakashima, D. Takagi, Y. Homma: CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst, Thin Solid Films 464/465, 286–289 (2004)

    Article  Google Scholar 

  139. C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber: Diameter-controlled synthesis of carbon nanotubes, J. Phys. Chem. B 106, 2429–2433 (2002)

    Article  Google Scholar 

  140. Y. Huh, J.Y. Lee, J. Cheon, Y.K. Hong, J.Y. Koo, T.J. Lee, C.J. Lee: Controlled growth of carbon nanotubes over cobalt nanoparticles by thermal chemical vapor deposition, J. Mater. Chem. 13, 2297–2300 (2003)

    Article  Google Scholar 

  141. M. Paillet, V. Jourdain, P. Poncharal, J.-L. Sauvajol, A. Zahab, J.C. Meyer, S. Roth, N. Cordente, C. Amiens, B. Chaudret: Versatile synthesis of individual single-walled carbon nanotubes from nickel nanoparticles for the study of their physical properties, J. Phys. Chem. B 108, 17112–17118 (2004)

    Article  Google Scholar 

  142. S. Casimirius, E. Flahaut, C. Laurent, C. Vieu, F. Carcenac, C. Laberty-Robert: Optimized microcontact printing process for the patterned growth of individual SWNTs, Microelectron. Eng. 73/74, 564–569 (2004)

    Article  Google Scholar 

  143. Y. Lei, K.S. Yeong, J.T.L. Thong, W.K. Chim: Large-scale ordered carbon nanotubes arrays initiated from highly ordered catalyst arrays on silicon substrates, Chem. Mater. 16, 2757–2761 (2004)

    Article  Google Scholar 

  144. Q. Ye, A.M. Cassel, H. Liu, K.J. Chao, J. Han, M. Meyyappan: Large-scale fabrication of carbon nanotube probe tips for atomic force microscopy critical dimension imaging applications, Nano Lett. 4, 1301–1308 (2004)

    Article  Google Scholar 

  145. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumara, S. Iijima: Ware-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science 306, 1362–1364 (2004)

    Article  Google Scholar 

  146. R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen: Continous production of aligned carbon nanotubes: A step closer to commercial realization, Chem. Phys. Lett. 303, 467–474 (1999)

    Article  Google Scholar 

  147. C.N.R. Rao, R. Sen, B.C. Satishkumar, A. Govindaraj: Large aligned carbon nanotubes bundles from ferrocene pyrolysis, Chem. Commun., 1525–1526 (1998)

    Google Scholar 

  148. X. Zhang, A. Cao, B. Wei, Y. Li, J. Wei, C. Xu, D. Wu: Rapid growth of well-aligned carbon nanotube arrays, Chem. Phys. Lett. 362, 285–290 (2002)

    Article  Google Scholar 

  149. X. Zhang, A. Cao, Y. Li, C. Xu, J. Liang, D. Wu, B. Wei: Self-organized arrays of carbon nanotube ropes, Chem. Phys. Lett. 351, 183–188 (2002)

    Article  Google Scholar 

  150. K.S. Choi, Y.S. Cho, S.Y. Hong, J.B. Park, D.J. Kim: Effects of ammonia on the alignment of carbon nanotubes in metal-assisted chemical vapor deposition, J. Eur. Ceram. Soc. 21, 2095–2098 (2001)

    Article  Google Scholar 

  151. N.S. Kim, Y.T. Lee, J. Park, J.B. Han, Y.S. Choi, S.Y. Choi, J. Choo, G.H. Lee: Vertically aligned carbon nanotubes grown by pyrolysis of iron, cobalt, and nickel phthalocyanines, J. Phys. Chem. B 107, 9249–9255 (2003)

    Article  Google Scholar 

  152. C. Emmeger, J.M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Züttel, L. Schlapbach: Synthesis of carbon nanotubes over Fe catalyst on aluminum and suggested growth mechanism, Carbon 41, 539–547 (2003)

    Article  Google Scholar 

  153. Q. Zhang, J. Huang, F. Wei, G. Xu, Y. Wang, W. Qian, D. Wang: Large scale production of carbon nanotubes arrays on the sphere surface from liquefied petroleum gas at low cost, Chin. Sci. Bull. 52, 2896–2902 (2007)

    Article  Google Scholar 

  154. X. Li, L. Zhang, X. Wang, I. Shimoyama, X. Sun, W.-S. Seo, H. Dai: Assembly of densely aligned single-walled carbon nanotubes from bulk materials Langmuir–Blodgett, J. Am. Chem. Soc. 129, 4890–4891 (2007)

    Article  Google Scholar 

  155. M. Endo, H.W. Kroto: Formation of carbon nanofibers, J. Phys. Chem. 96, 6941–6944 (1992)

    Article  Google Scholar 

  156. R.S. Wagner: VLS mechanisms of crystal growth. In: Whisker Technology, ed. by P.A. Levit (Wiley, New York 1970) pp. 47–72

    Google Scholar 

  157. Y.H. Lee, S.G. Kim, D. Tomanek: Catalytic growth of single-wall carbon nanotubes: An ab initio study, Phys. Rev. Lett. 78, 2393–2396 (1997)

    Article  Google Scholar 

  158. H. Dai: Carbon Nanotubes: Synthesis, integration, and properties, Acc. Chem. Res. 35, 1035–1044 (2002)

    Article  Google Scholar 

  159. V. Jourdain, H. Kanzow, M. Castignolles, A. Loiseau, P. Bernier: Sequential catalytic growth of carbon nanotubes, Chem. Phys. Lett. 364, 27–33 (2002)

    Article  Google Scholar 

  160. Y. Saito, M. Okuda, N. Fujimoto, T. Yoshikawa, M. Tomita, T. Hayashi: Single-wall carbon nanotubes growing radially from Ni fine particles formed by arc evaporation, Jpn. J. Appl. Phys. 33, L526–L529 (1994)

    Article  Google Scholar 

  161. J. Bernholc, C. Brabec, M. Buongiorno Nardelli, A. Malti, C. Roland, B.J. Yakobson: Theory of growth and mechanical properties of nanotubes, Appl. Phys. A 67, 39–46 (1998)

    Article  Google Scholar 

  162. M. Pacheco: Synthèse des nanotubes de carbone par arc electrique. Ph.D. Thesis (Université Toulouse III, Toulouse 2003)

    Google Scholar 

  163. K. Méténier, S. Bonnamy, F. Béguin, C. Journet, P. Bernier, L.M. de la Chapelle, O. Chauvet, S. Lefrant: Coalescence of single walled nanotubes and formation of multi-walled carbon nanotubes under high temperature treatments, Carbon 40, 1765–1773 (2002)

    Article  Google Scholar 

  164. P.G. Collins, P. Avouris: Nanotubes for electronics, Sci. Am. 283, 38–45 (2000)

    Google Scholar 

  165. Q.-H. Yang, P.X. Hou, S. Bai, M.Z. Wang, H.M. Cheng: Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes, Chem. Phys. Lett. 345, 18–24 (2001)

    Article  Google Scholar 

  166. S. Inoue, N. Ichikuni, T. Suzuki, T. Uematsu, K. Kaneko: Capillary condensation of N_2 on multiwall carbon nanotubes, J. Phys. Chem. 102, 4689–4692 (1998)

    Article  Google Scholar 

  167. S. Agnihotri, J.P. Mota, M. Rostam-Abadi, M.J. Rood: Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation, Langmuir 21, 896–904 (2005)

    Article  Google Scholar 

  168. M. Eswaramoorthy, R. Sen, C.N.R. Rao: A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors, Chem. Phys. Lett. 304, 207–210 (1999)

    Article  Google Scholar 

  169. S. Furmaniak, A.P. Terzyk, P.A. Gauden, K. Lota, E. Frackowiak, F. Beguin, P. Kowalczyk: Determination of the space between closed multiwalled carbon nanotubes by GCMC simulation of nitrogen adsorption, J. Colloid Interface Sci. 317, 442–448 (2008)

    Article  Google Scholar 

  170. A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset: Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon 39, 507–514 (2001)

    Article  Google Scholar 

  171. E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoros, F. Béguin: Enhanced capacitance of carbon nanotubes through chemical activation, Chem. Phys. Lett. 336, 35–41 (2002)

    Article  Google Scholar 

  172. E. Raymundo-Piñero, P. Azaïs, T. Cacciaguerra, D. Cazorla-Amorós, A. Linares-Solano, F. Béguin: KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation, Carbon 43, 786–795 (2005)

    Article  Google Scholar 

  173. S. Delpeux, K. Szostak, E. Frackowiak, F. Béguin: An efficient two-step process for producing opened multi-walled carbon nanotubes of high purity, Chem. Phys. Lett. 404, 374–378 (2005)

    Article  Google Scholar 

  174. K.A. Williams, P.C. Eklund: Monte Carlo simulation of H_2 physisorption in finite diameter carbon nanotube ropes, Chem. Phys. Lett. 320, 352–358 (2000)

    Article  Google Scholar 

  175. U. Burghaus, D. Bye, K. Cosert, J. Goering, A. Guerard, E. Kadossov, E. Lee, Y. Nadoyama, N. Richter, E. Schaefer, J. Smith, D. Ulness, B. Wymore: Methanol adsorption in carbon nanotubes, Chem. Phys. Lett. 442, 344–347 (2007)

    Article  Google Scholar 

  176. Z. Chen, W. Thiel, A. Hirsch: Reactivity of the convex and concave surfaces of single-walled carbon nanotubes (SWCNTs) towards addition reactions: dependence on the carbon-atom pyramidalization, ChemPhysChem 1, 93–97 (2003)

    Article  Google Scholar 

  177. S. Park, D. Srivastava, K. Cho: Generalized reactivity of curved surfaces: carbon nanotubes, Nano Lett. 3, 1273–1277 (2003)

    Article  Google Scholar 

  178. X. Lu, Z. Chen, P. Schleyer: Are Stone–Wales defect sites always more reactive than perfect sites in the sidewalls of single-wall carbon nanotubes?, J. Am. Chem. Soc. 127, 20–21 (2005)

    Article  Google Scholar 

  179. M. Muris, N. Dupont-Pavlosky, M. Bienfait, P. Zeppenfeld: Where are the molecules adsorbed on single-walled nanotubes?, Surf. Sci. 492, 67–74 (2001)

    Article  Google Scholar 

  180. R.B. Hallock, Y.H. Yang: Adsorption of helium and other gases to carbon nanotubes and nanotubes bundles, J. Low Temp. Phys. 134, 21–30 (2004)

    Article  Google Scholar 

  181. J. Zhu, Y. Wang, W. Li, F. Wei, Y. Yu: Density functional study of nitrogen adsorption in single-wall carbon nanotubes, Nanotechnology 18, 095707 (2007)

    Article  Google Scholar 

  182. A. Fujiwara, K. Ishii, H. Suematsu, H. Kataura, Y. Maniwa, S. Suzuki, Y. Achiba: Gas adsorption in the inside and outside of single-walled carbon nanotubes, Chem. Phys. Lett. 336, 205–211 (2001)

    Article  Google Scholar 

  183. C.M. Yang, H. Kanoh, K. Kaneko, M. Yudasaka, S. Iijima: Adsorption behaviors of HiPco single-walled carbon nanotubes aggregates for alcohol vapors, J. Phys. Chem. 106, 8994–8999 (2002)

    Article  Google Scholar 

  184. D.H. Yoo, G.H. Rue, M.H.W. Chan, Y.W. Hwang, H.K. Kim: Study of nitrogen adsorbed on open-ended nanotube bundles, J. Phys. Chem. B 107, 1540–1542 (2003)

    Article  Google Scholar 

  185. J. Jiang, S.I. Sandler: Nitrogen adsorption on carbon nanotubes bundles: Role of the external surface, Phys. Rev. B 68, 245412–1–245412–9 (2003)

    Article  Google Scholar 

  186. M. Arab, F. Picaud, C. Ramseyer, M.R. Babaa, F. Valsaque, E. McRae: Characterization of single wall carbon nanotubes by means of rare gas adsorption, J. Chem. Phys. 126, 054709 (2007)

    Article  Google Scholar 

  187. J. Zhao, A. Buldum, J. Han, J.P. Lu: Gas molecule adsorption in carbon nanotubes and nanotube bundles, Nanotechnology 13, 195–200 (2002)

    Article  Google Scholar 

  188. C. Matranga, B. Bockrath: Hydrogen-bonded and physisorbed CO in single-walled carbon nanotubes bundles, J. Phys. Chem. B 109, 4853–4864 (2005)

    Article  Google Scholar 

  189. M.D. Ellison, M.J. Crotty, D. Koh, R.L. Spray, K.E. Tate: Adsorption of NH_3 and NO_2 on single-walled carbon nanotubes, J. Phys. Chem. B 108, 7938–7943 (2004)

    Article  Google Scholar 

  190. S. Picozzi, S. Santucci, L. Lozzi, L. Valentin, B. Delley: Ozone adsorption on carbon nanotubes: The role of Stone–Wales defects, J. Chem. Phys. 120, 7147–7152 (2004)

    Article  Google Scholar 

  191. N. Chakrapani, Y.M. Zhang, S.K. Nayak, J.A. Moore, D.L. Carrol, Y.Y. Choi, P.M. Ajayan: Chemisorption of acetone on carbon nanotubes, J. Phys. Chem. B 107, 9308–9311 (2003)

    Article  Google Scholar 

  192. A. Chambers, C. Park, R.T.K. Baker, N. Rodriguez: Hydrogen storage in graphite nanofibers, J. Phys. Chem. B 102, 4253–4256 (1998)

    Article  Google Scholar 

  193. J. Giraudet, M. Dubois, D. Claves, J.P. Pinheiro, M.C. Schouler, P. Gadelle, A. Hamwi: Modifying the electronic properties of multi-wall carbon nanotubes via charge transfer, by chemical doping with some inorganic fluorides, Chem. Phys. Lett. 381, 306–314 (2003)

    Article  Google Scholar 

  194. J. Hilding, E.A. Grulke, S.B. Sinnott, D. Qian, R. Andrews, M. Jagtoyen: Sorption of butane on carbon multiwall nanotubes at room temperature, Langmuir 17, 7540–7544 (2001)

    Article  Google Scholar 

  195. K. Masenelli-Varlot, E. McRae, N. Dupont-Pavlosky: Comparative adsorption of simple molecules on carbon nanotubes. Dependence of the adsorption properties on the nanotube morphology, Appl. Surf. Sci. 196, 209–215 (2002)

    Article  Google Scholar 

  196. D.J. Browning, M.L. Gerrard, J.B. Lakeman, I.M. Mellor, R.J. Mortimer, M.C. Turpin: Studies into the storage of hydrogen in carbon nanofibers: Proposal of a possible mechanism, Nano Lett. 2, 201–205 (2002)

    Article  Google Scholar 

  197. F.H. Yang, R.T. Yang: Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: insight into hydrogen storage in carbon nanotubes, Carbon 40, 437–444 (2002)

    Article  Google Scholar 

  198. A.D. Lueking, R.T. Yang: Hydrogen spillover to enhance hydrogen storage – Study of the effect of carbon physicochemical properties, Appl. Catal. A 265, 259–268 (2004)

    Article  Google Scholar 

  199. G.E. Froudakis: Why alkali-metal-doped carbon nanotubes possess high hydrogen uptake, Nano Lett. 1, 531–533 (2001)

    Article  Google Scholar 

  200. H. Ulbricht, G. Moos, T. Hertel: Physisorption of molecular oxygen on single-wall carbon nanotube bundles and graphite, Phys. Rev. B 66, 075404–1–075404–7 (2002)

    Article  Google Scholar 

  201. H. Ulbricht, J. Kriebel, G. Moos, T. Hertel: Desorption kinetics and interaction of Xe with single-wall carbon nanotube bundles, Chem. Phys. Lett. 363, 252–260 (2002)

    Article  Google Scholar 

  202. J.-C. Charlier, X. Blase, S. Roche: Electronic and transport properties of carbon nanotubes, Rev. Mod. Phys. 79, 677–732 (2007)

    Article  Google Scholar 

  203. R. Saito, G. Dresselhaus, M.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)

    Book  Google Scholar 

  204. A. Charlier, E. McRae, R. Heyd, M.F. Charlier, D. Moretti: Classification for double-walled carbon nanotubes, Carbon 37, 1779–1783 (1999)

    Article  Google Scholar 

  205. A. Charlier, E. McRae, R. Heyd, M.F. Charlier: Metal semi-conductor transitions under uniaxial stress for single- and double-walled carbon nanotubes, J. Phys. Chem. Solids 62, 439–444 (2001)

    Article  Google Scholar 

  206. P. Puech, H. Hubel, D. Dunstan, R.R. Bacsa, C. Laurent, W.S. Bacsa: Discontinuous tangential stress in double wall carbon nanotubes, Phys. Rev. Lett. 93, 095506 (2004)

    Article  Google Scholar 

  207. P.M. Ajayan, M. Terrrones, A. de la Guardia, V. Hue, N. Grobert, B.Q. Wei, H. Lezec, G. Ramanath, T.W. Ebbesen: Nanotubes in a flash – Ignition and reconstruction, Science 296, 705 (2002)

    Article  Google Scholar 

  208. H. Ajiki, T. Ando: Electronic states of carbon nanotubes, J. Phys. Soc. Jpn. 62, 1255–1266 (1993)

    Article  Google Scholar 

  209. T. Ando: Excitons in carbon nanotubes, J. Phys. Soc. Jpn. 66, 1066 (1997)

    Article  MathSciNet  Google Scholar 

  210. S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman: Structure-assigned optical spectra of single-walled carbon nanotubes, Science 298, 2361 (2002)

    Article  Google Scholar 

  211. M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen: Luttinger liquid behaviour in carbon nanotubes, Nature 397, 598–601 (1999)

    Article  Google Scholar 

  212. C.T. White, T.N. Todorov: Carbon nanotubes as long ballistic conductors, Nature 393, 240–242 (1998)

    Article  Google Scholar 

  213. S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer: Carbon nanotube quantum resistors, Science 280, 1744–1746 (1998)

    Article  Google Scholar 

  214. W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park: Fabry–Perot interference in a nanotube electron waveguide, Nature 411, 665–669 (2001)

    Article  Google Scholar 

  215. L. Langer, V. Bayot, E. Grivei, J.-P. Issi, J.-P. Heremans, C.H. Olk, L. Stockman, C. van Haesendonck, Y. Buynseraeder: Quantum transport in a multi-walled carbon nanotube, Phys. Rev. Lett. 76, 479–482 (1996)

    Article  Google Scholar 

  216. K. Liu, S. Roth, G.S. Duesberg, G.T. Kim, D. Popa, K. Mukhopadhyay, R. Doome, J. BʼNagy: Antilocalization in multiwalled carbon nanotubes, Phys. Rev. B 61, 2375–2379 (2000)

    Article  Google Scholar 

  217. G. Fedorov, B. Lassagne, M. Sagnes, B. Raquet, J.M. Broto, F. Triozon, S. Roche, E. Flahaut: Gate-dependent magnetoresistance phenomena in carbon nanotubes, Phys. Rev. Lett. 94, 66801–66804 (2005)

    Article  Google Scholar 

  218. A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai: Ballistic carbon nanotube field-effect transistors, Nature 424, 654–657 (2003)

    Article  Google Scholar 

  219. Y.A. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I.I. Khodos, Y.B. Gorbatov, V.T. Volkov, C. Journet, M. Burghard: Supercurrents through single-walled carbon nanotubes, Science 284, 1508–1511 (1999)

    Article  Google Scholar 

  220. B.W. Alphenaar, K. Tsukagoshi, M. Wagner: Magnetoresistance of ferromagnetically contacted carbon nanotubes, Phys. Eng. 10, 499–504 (2001)

    Article  Google Scholar 

  221. S. Berber, Y. Kwon, D. Tomanek: Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84, 4613–4616 (2000)

    Article  Google Scholar 

  222. M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelley, R.S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287, 637–640 (2000)

    Article  Google Scholar 

  223. D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley: Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett. 74, 3803–3805 (1999)

    Article  Google Scholar 

  224. B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R.O. Ritchie: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Mater. Sci. Eng. A 334, 173–178 (2002)

    Article  Google Scholar 

  225. R.P. Gao, Z.L. Wang, Z.G. Bai, W.A. De Heer, L.M. Dai, M. Gao: Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays, Phys. Rev. Lett. 85, 622–625 (2000)

    Article  Google Scholar 

  226. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Exceptionally high Youngʼs modulus observed for individual carbon nanotubes, Nature 381, 678–680 (1996)

    Article  Google Scholar 

  227. N. Yao, V. Lordie: Youngʼs modulus of single-wall carbon nanotubes, J. Appl. Phys. 84, 1939–1943 (1998)

    Article  Google Scholar 

  228. O. Lourie, H.D. Wagner: Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension, Appl. Phys. Lett. 73, 3527–3529 (1998)

    Article  Google Scholar 

  229. S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green: A simple chemical method of opening and filling carbon nanotubes, Nature 372, 159–162 (1994)

    Article  Google Scholar 

  230. M. Monthioux: Filling single-wall carbon nanotubes, Carbon 40, 1809–1823 (2002)

    Article  Google Scholar 

  231. W.K. Hsu, S.Y. Chu, E. Munoz-Picone, J.L. Boldu, S. Firth, P. Franchi, B.P. Roberts, A. Shilder, H. Terrones, N. Grobert, Y.Q. Zhu, M. Terrones, M.E. McHenry, H.W. Kroto, D.R.M. Walton: Metallic behaviour of boron-containing carbon nanotubes, Chem. Phys. Lett. 323, 572–579 (2000)

    Article  Google Scholar 

  232. R. Czerw, M. Terrones, J.C. Charlier, X. Blasé, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P.M. Ajayan, W. Blau, M. Rühle, D.L. Caroll: Identification of electron donor states, in N-doped carbon nanotubes, Nano Lett. 1, 457–460 (2001)

    Article  Google Scholar 

  233. O. Stephan, P.M. Ajayan, C. Colliex, P. Redlich, J.M. Lambert, P. Bernier, P. Lefin: Doping graphitic and carbon nanotube structures with boron and nitrogen, Science 266, 1683–1685 (1994)

    Article  Google Scholar 

  234. A. Loiseau, F. Willaime, N. Demoncy, N. Schramchenko, G. Hug, C. Colliex, H. Pascard: Boron nitride nanotubes, Carbon 36, 743–752 (1998)

    Article  Google Scholar 

  235. C.C. Tang, L.M. de la Chapelle, P. Li, Y.M. Liu, H.Y. Dang, S.S. Fan: Catalytic growth of nanotube and nanobamboo structures of boron nitride, Chem. Phys. Lett. 342, 492–496 (2001)

    Article  Google Scholar 

  236. K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, F. Willaime: Synthesis of nanoparticles and nanotubes with well separated layers of boron-nitride and carbon, Science 278, 653–655 (1997)

    Article  Google Scholar 

  237. D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato: Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles, Carbon 38, 2017–2027 (2000)

    Article  Google Scholar 

  238. R.S. Lee, J. Gavillet, M. Lamy de la Chapelle, A. Loiseau, J.-L. Cochon, D. Pigache, J. Thibault, F. Willaime: Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration, Phys. Rev. B 64, 121405.1–121405.4 (2001)

    Google Scholar 

  239. B. Burteaux, A. Claye, B.W. Smith, M. Monthioux, D.E. Luzzi, J.E. Fischer: Abundance of encapsulated C_60 in single-wall carbon nanotubes, Chem. Phys. Lett. 310, 21–24 (1999)

    Article  Google Scholar 

  240. D. Ugarte, A. Châtelain, W.A. de Heer: Nanocapillarity and chemistry in carbon nanotubes, Science 274, 1897–1899 (1996)

    Article  Google Scholar 

  241. J. Cook, J. Sloan, M.L.H. Green: Opening and filling carbon nanotubes, Fuller. Sci. Technol. 5, 695–704 (1997)

    Article  Google Scholar 

  242. P.M. Ajayan, S. Iijima: Capillarity-induced filling of carbon nanotubes, Nature 361, 333–334 (1993)

    Article  Google Scholar 

  243. P.M. Ajayan, T.W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura: Opening carbon nanotubes with oxygen and implications for filling, Nature 362, 522–525 (1993)

    Article  Google Scholar 

  244. S. Seraphin, D. Zhou, J. Jiao, J.C. Withers, R. Loufty: Yttrium carbide in nanotubes, Nature 362, 503 (1993)

    Article  Google Scholar 

  245. S. Seraphin, D. Zhou, J. Jiao, J.C. Withers, R. Loufty: Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters, Appl. Phys. Lett. 63, 2073–2075 (1993)

    Article  Google Scholar 

  246. R.S. Ruoff, D.C. Lorents, B. Chan, R. Malhotra, S. Subramoney: Single-crystal metals encapsulated in carbon nanoparticles, Science 259, 346–348 (1993)

    Article  Google Scholar 

  247. A. Loiseau, H. Pascard: Synthesis of long carbon nanotubes filled with Se, S, Sb, and Ge by the arc method, Chem. Phys. Lett. 256, 246–252 (1996)

    Article  Google Scholar 

  248. N. Demoncy, O. Stephan, N. Brun, C. Colliex, A. Loiseau, H. Pascard: Filling carbon nanotubes with metals by the arc discharge method: The key role of sulfur, Eur. Phys. J. B 4, 147–157 (1998)

    Google Scholar 

  249. C.H. Kiang, J.S. Choi, T.T. Tran, A.D. Bacher: Molecular nanowires of 1 nm diameter from capillary filling of single-walled carbon nanotubes, J. Phys. Chem. B 103, 7449–7551 (1999)

    Article  Google Scholar 

  250. Z.L. Zhang, B. Li, Z.J. Shi, Z.N. Gu, Z.Q. Xue, L.M. Peng: Filling of single-walled carbon nanotubes with silver, J. Mater. Res. 15, 2658–2661 (2000)

    Article  Google Scholar 

  251. A. Govindaraj, B.C. Satishkumar, M. Nath, C.N.R. Tao: Metal nanowires and intercalated metal layers in single-walled carbon nanotubes bundles, Chem. Mater. 12, 202–205 (2000)

    Article  Google Scholar 

  252. J. Mittal, M. Monthioux, H. Allouche: Room temperature filling of single-wall carbon nanotubes with chromium oxide in open air, Chem. Phys. Lett. 339, 311–318 (2001)

    Article  Google Scholar 

  253. E. Dujardin, T.W. Ebbesen, H. Hiura, K. Tanigaki: Capillarity and wetting of carbon nanotubes, Science 265, 1850–1852 (1994)

    Article  Google Scholar 

  254. E. Flahaut, J. Sloan, K.S. Coleman, V.C. Williams, S. Friedrichs, N. Hanson, M.L.H. Green: 1D p-block halide crystals confined into single walled carbon nanotubes, Proc. Mater. Res. Soc. Symp., Vol. 633 (2001) pp. A13.15.1–A13.15.6

    Google Scholar 

  255. J. Sloan, A.I. Kirkland, J.L. Hutchison, M.L.H. Green: Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes, Chem. Commun., 1319–1332 (2002)

    Google Scholar 

  256. J. Sloan, M.C. Novotny, S.R. Bailey, G. Brown, C. Xu, V.C. Williams, S. Friedrichs, E. Flahaut, R.L. Callender, A.P.E. York, K.S. Coleman, M.L.H. Green, R.E. Dunin-Borkowski, J.L. Hutchison: Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes, Chem. Phys. Lett. 329, 61–65 (2000)

    Article  Google Scholar 

  257. G. Brown, S.R. Bailey, J. Sloan, C. Xu, S. Friedrichs, E. Flahaut, K.S. Coleman, J.L. Hutchinson, R.E. Dunin-Borkowski, M.L.H. Green: Electron beam induced in situ clusterisation of 1D ZrCl_4 chains within single-walled carbon nanotubes, Chem. Commun., 845–846 (2001)

    Google Scholar 

  258. J. Sloan, D.M. Wright, H.G. Woo, S. Bailey, G. Brown, A.P.E. York, K.S. Coleman, J.L. Hutchison, M.L.H. Green: Capillarity and silver nanowire formation observed in single walled carbon nanotubes, Chem. Commun., 699–700 (1999)

    Google Scholar 

  259. X. Fan, E.C. Dickey, P.C. Eklund, K.A. Williams, L. Grigorian, R. Buczko, S.T. Pantelides, S.J. Pennycook: Atomic arrangement of iodine atoms inside single-walled carbon nanotubes, Phys. Rev. Lett. 84, 4621–4624 (2000)

    Article  Google Scholar 

  260. G. Brown, S.R. Bailey, M. Novotny, R. Carter, E. Flahaut, K.S. Coleman, J.L. Hutchison, M.L.H. Green, J. Sloan: High yield incorporation and washing properties of halides incorporated into single walled carbon nanotubes, Appl. Phys. A 76, 457–462 (2003)

    Article  Google Scholar 

  261. J. Sloan, D.E. Luzzi, A.I. Kirkland, J.L. Hutchison, M.L.H. Green: Imaging and characterization of molecules and one-dimensional crystals formed within carbon nanotubes, Mater. Res. Soc. Bull. 29, 265–271 (2004)

    Article  Google Scholar 

  262. J. Chancolon, F. Archaimbault, A. Pineau, S. Bonnamy: Confinement of selenium into carbon nanotubes, Fuller. Nanotub. Carbon Nanostruct. 13, 189–194 (2005)

    Article  Google Scholar 

  263. B.W. Smith, M. Monthioux, D.E. Luzzi: Encapsulated C_60 in carbon nanotubes, Nature 396, 323–324 (1998)

    Article  Google Scholar 

  264. B.W. Smith, D.E. Luzzi: Formation mechanism of fullerene peapods and coaxial tubes: A path to large scale synthesis, Chem. Phys. Lett. 321, 169–174 (2000)

    Article  Google Scholar 

  265. K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H. Shinohara, S. Iijima: One-dimensional metallo-fullerene crystal generated inside single-walled carbon nanotubes, Phys. Rev. Lett. 85, 5384–5387 (2000)

    Article  Google Scholar 

  266. B.W. Smith, M. Monthioux, D.E. Luzzi: Carbon nanotube encapsulated fullerenes: A unique class of hybrid material, Chem. Phys. Lett. 315, 31–36 (1999)

    Article  Google Scholar 

  267. D.E. Luzzi, B.W. Smith: Carbon cage structures in single wall carbon nanotubes: A new class of materials, Carbon 38, 1751–1756 (2000)

    Article  Google Scholar 

  268. S. Bandow, M. Takisawa, K. Hirahara, M. Yudasoka, S. Iijima: Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes, Chem. Phys. Lett. 337, 48–54 (2001)

    Article  Google Scholar 

  269. Y. Sakurabayashi, M. Monthioux, K. Kishita, Y. Suzuki, T. Kondo, M. Le Lay: Tayloring double wall carbon nanotubes?. In: Molecular Nanostructures, Am. Inst. Phys. Conf. Proc., Vol. 685, ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2003) pp. 302–305

    Google Scholar 

  270. B.W. Smith, D.E. Luzzi, Y. Achiba: Tumbling atoms and evidence for charge transfer in La_2@C_80@SWNT, Chem. Phys. Lett. 331, 137–142 (2000)

    Article  Google Scholar 

  271. K. Suenaga, M. Tence, C. Mory, C. Colliex, H. Kato, T. Okazaki, H. Shinohara, K. Hirahara, S. Bandow, S. Iijima: Element-selective single atom imaging, Science 290, 2280–2282 (2000)

    Article  Google Scholar 

  272. D.E. Luzzi, B.W. Smith, R. Russo, B.C. Satishkumar, F. Stercel, N.R.C. Nemes: Encapsulation of metallofullerenes and metallocenes in carbon nanotubes, Proc. Electron. Prop. Nov. Mater. – XVI Int. Wintersch. – AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2001) pp. 622–626

    Chapter  Google Scholar 

  273. D.J. Hornbaker, S.-J. Kahng, S. Misra, B.W. Smith, A.T. Johnson, E.J. Mele, D.E. Luzzi, A. Yazdani: Mapping the one-dimensional electronic states of nanotube peapod structures, Science 295, 828–831 (2002)

    Article  Google Scholar 

  274. H. Kondo, H. Kino, T. Ohno: Transport properties of carbon nanotubes encapsulating C_60 and related materials, Phys. Rev. B 71, 115413 (2005)

    Article  Google Scholar 

  275. S.H. Jhang, S.W. Lee, D.S. Lee, Y.W. Park, G.H. Jeong, T. Hirata, R. Hatakeyama, U. Dettlaff, S. Roth, M.S. Kabir, E.E.B. Campbell: Random telegraph noise in carbon nanotube peapod transistors, Fuller. Nanotub. Carbon Nanostruct. 13, 195–198 (2005)

    Article  Google Scholar 

  276. G.H. Jeong, R. Hatakeyama, T. Hirata, K. Tohji, K. Motomiya, N. Sato, Y. Kawazoe: Structural deformation of single-walled carbon nanotubes and fullerene encapsulation due to magnetized plasma ion irradiation, Appl. Phys. Lett. 79, 4213–4215 (2001)

    Article  Google Scholar 

  277. Y.P. Sun, K. Fu, Y. Lin, W. Huang: Functionalized carbon nanotubes: Properties and applications, Acc. Chem. Res. 35, 1095–1104 (2002)

    Article  Google Scholar 

  278. S. Osswald, E. Flahaut, H. Ye, Y. Gogotsi: Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation, Chem. Phys. Lett. 402, 422–427 (2005)

    Article  Google Scholar 

  279. J. Chen, M.A. Hamon, M. Hui, C. Yongsheng, A.M. Rao, P.C. Eklund, R.C. Haddon: Solution properties of single-walled carbon nanotubes, Science 282, 95–98 (1998)

    Article  Google Scholar 

  280. J. Chen, A.M. Rao, S. Lyuksyutov, M.E. Itkis, M.A. Hamon, H. Hu, R.W. Cohn, P.C. Eklund, D.T. Colbert, R.E. Smalley, R.C. Haddon: Dissolution of full-length single-walled carbon nanotubes, J. Phys. Chem. B 105, 2525–2528 (2001)

    Article  Google Scholar 

  281. F. Pompeo, D.E. Resasco: Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine, Nano Lett. 2, 369–373 (2002)

    Article  Google Scholar 

  282. Y.P. Sun, W. Huang, Y. Lin, K. Fu, A. Kitaygorodskiy, L.A. Riddle, Y.J. Yu, D.L. Carroll: Soluble dendron-functionalized carbon nanotubes: Preparation, characterization, and properties, Chem. Mater. 13, 2864–2869 (2001)

    Article  Google Scholar 

  283. K. Fu, W. Huang, Y. Lin, L.A. Riddle, D.L. Carroll, Y.P. Sun: Defunctionalization of functionalized carbon nanotubes, Nano Lett. 1, 439–441 (2001)

    Article  Google Scholar 

  284. P.W. Chiu, G.S. Duesberg, U. Dettlaff-Weglikowska, S. Roth: Interconnection of carbon nanotubes by chemical functionalization, Appl. Phys. Lett. 80, 3811–3813 (2002)

    Article  Google Scholar 

  285. T. Fukushima, T. Aida: Ionic liquids for soft functional materials with carbon nanotubes, Chem. Eur. J. 13, 5048–5058 (2007)

    Article  Google Scholar 

  286. Y. Lei, C. Xiong, L. Dong, H. Guo, X. Su, J. Yao, Y. You, D. Tian, X. Shang: Ionic liquid of ultralong carbon nanotubes, Small 3, 1889–1893 (2007)

    Article  Google Scholar 

  287. E.T. Mickelson, C.B. Huffman, A.G. Rinzler, R.E. Smalley, R.H. Hauge, J.L. Margrave: Fluorination of single-wall carbon nanotubes, Chem. Phys. Lett. 296, 188–194 (1998)

    Article  Google Scholar 

  288. V.N. Khabashesku, W.E. Billups, J.L. Margrave: Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions, Acc. Chem. Res. 35, 1087–1095 (2002)

    Article  Google Scholar 

  289. P.J. Boul, J. Liu, E.T. Michelson, C.B. Huffman, L.M. Ericson, I.W. Chiang, K.A. Smith, D.T. Colbert, R.H. Hauge, J.L. Margrave, R.E. Smalley: Reversible side-wall functionalization of buckytubes, Chem. Phys. Lett. 310, 367–372 (1999)

    Article  Google Scholar 

  290. J.L. Bahr, J. Yang, D.V. Kosynkin, M.J. Bronikowski, R.E. Smalley, J.M. Tour: Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode, J. Am. Chem. Soc. 123, 6536–6542 (2001)

    Article  Google Scholar 

  291. M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R. Weiss, F. Jellen: Sidewall functionalization of carbon nanotubes, Angew. Chem. Int. Ed. 40, 4002–4005 (2001)

    Article  Google Scholar 

  292. Y. Chen, R.C. Haddon, S. Fang, A.M. Rao, P.C. Eklund, W.H. Lee, E.C. Dickey, E.A. Grulke, J.C. Pendergrass, A. Chavan, B.E. Haley, R.E. Smalley: Chemical attachment of organic functional groups to single-walled carbon nanotube material, J. Mater. Res. 13, 2423–2431 (1998)

    Article  Google Scholar 

  293. C. Velasco-Santos, A.L. Martinez-Hernandez, M. Lozada-Cassou, A. Alvarez-Castillo, V.M. Castano: Chemical functionalization of carbon nanotubes through an organosilane, Nanotechnology 13, 495–498 (2002)

    Article  Google Scholar 

  294. A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath: Preparation and properties of polymer-wrapped single-walled carbon nanotubes, Angew. Chem. Int. Ed. 41, 1721–1725 (2002)

    Article  Google Scholar 

  295. A. Pénicaud, P. Poulin, A. Derré, E. Anglaret, P. Petit: Spontaneous dissolution of a single-wall carbon nanotube salt, J. Am. Chem. Soc. 127, 8–9 (2005)

    Article  Google Scholar 

  296. R. Stevens, C. Nguyen, A. Cassel, L. Delzeit, M. Meyyapan, J. Han: Improved fabrication approach for carbon nanotube probe devices, Appl. Phys. Lett. 77, 3453–3455 (2000)

    Article  Google Scholar 

  297. J.H. Hafner, C.L. Cheung, A.T. Wooley, C.M. Lieber: Structural and functional imaging with carbon nanotube AFM probes, Progr. Biophys. Mol. Biol. 77, 73–110 (2001)

    Article  Google Scholar 

  298. S.S. Wong, E. Joselevich, A.T. Woodley, C.L. Cheung, C.M. Lieber: Covalently functionalized nanotubes as nanometre-size probes in chemistry and biology, Nature 394, 52–55 (1998)

    Article  Google Scholar 

  299. C.L. Cheung, J.H. Hafner, C.M. Lieber: Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging, Proc. Natl. Acad. Sci. USA 97, 3809–3813 (2000)

    Article  Google Scholar 

  300. W.A. de Heer, A. Châtelain, D. Ugarte: A carbon nanotube field-emission electron source, Science 270, 1179–1180 (1995)

    Article  Google Scholar 

  301. J.M. Bonard, J.P. Salvetat, T. Stockli, W.A. de Heer, L. Forro, A. Chatelâin: Field emission from single-wall carbon nanotube films, Appl. Phys. Lett. 73, 918–920 (1998)

    Article  Google Scholar 

  302. W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin: Large curent density from carbon nanotube field emitters, Appl. Phys. Lett. 75, 873–875 (1999)

    Article  Google Scholar 

  303. Y. Saito, R. Mizushima, T. Tanaka, K. Tohji, K. Uchida, M. Yumura, S. Uemura: Synthesis, structure, and field emission of carbon nanotubes, Fuller. Sci. Technol. 7, 653–664 (1999)

    Article  Google Scholar 

  304. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai: Nanotube molecular wire as chemical sensors, Science 287, 622–625 (2000)

    Article  Google Scholar 

  305. P.G. Collins, K. Bradley, M. Ishigami, A. Zettl: Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science 287, 1801–1804 (2000)

    Article  Google Scholar 

  306. H. Chang, J.D. Lee, S.M. Lee, Y.H. Lee: Adsorption of NH_3 and NO_2 molecules on carbon nanotubes, Appl. Phys. Lett. 79, 3863–3865 (2001)

    Article  Google Scholar 

  307. C. Cantalini, L. Valentini, L. Lozzi, I. Armentano, J.M. Kenny, S. Santucci: NO_2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition, Sens. Actuators B 93, 333–337 (2003)

    Article  Google Scholar 

  308. J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan: Carbon nanotubes sensors for gas and organic vapor detection, Nano Lett. 3, 929–933 (2003)

    Article  Google Scholar 

  309. O.K. Varghese, P.D. Kichambre, D. Gong, K.G. Ong, E.C. Dickey, C.A. Grimes: Gas sensing characteristics of multi-wall carbon nanotubes, Sens. Actuators B 81, 32–41 (2001)

    Article  Google Scholar 

  310. K.G. Ong, K. Zeng, C.A. Grimes: A wireless, passive carbon nanotube-based gas sensor, IEEE Sens. J. 2(2), 82–88 (2002)

    Article  Google Scholar 

  311. J. Kong, M.G. Chapline, H. Dai: Functionalized carbon nanotubes for molecular hydrogen sensors, Adv. Mater. 13, 1384–1386 (2001)

    Article  Google Scholar 

  312. A. Modi, N. Koratkar, E. Lass, B. Wei, P.M. Ajayan: Miniaturized gas ionisation sensors using carbon nanotubes, Nature 424, 171–174 (2003)

    Article  Google Scholar 

  313. F. Rodriguez-Reinoso: The role of carbon materials in heterogeneous catalysis, Carbon 36, 159–175 (1998)

    Article  Google Scholar 

  314. E. Auer, A. Freund, J. Pietsch, T. Tacke: Carbon as support for industrial precious metal catalysts, Appl. Catal. A 173, 259–271 (1998)

    Article  Google Scholar 

  315. J.M. Planeix, N. Coustel, B. Coq, B. Botrons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan: Application of carbon nanotubes as supports in heterogeneous catalysis, J. Am. Chem. Soc. 116, 7935–7936 (1994)

    Article  Google Scholar 

  316. P. Serp, M. Corrias, P. Kalck: Carbon nanotubes and nanofibers in catalysis, Appl. Catal. A 253, 337–358 (2003)

    Article  Google Scholar 

  317. K.P. De Jong, J.W. Geus: Carbon nanofibers: catalytic synthesis and applications, Catal. Rev. 42, 481–510 (2000)

    Article  Google Scholar 

  318. N.F. Goldshleger: Fullerene and fullerene-based materials in catalysis, Fuller. Sci. Technol. 9, 255–280 (2001)

    Article  Google Scholar 

  319. X. Pan, Z. Fan, W. Chen, Y. Ding, H. Luo, X. Bao: Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles, Nat. Mater. 6, 507–511 (2007)

    Article  Google Scholar 

  320. M.F.R. Pereira, J.L. Figueiredo, J.J.M. Órfão, P. Serp, P. Kalck, Y. Kihn: Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene, Carbon 42, 2807–2813 (2004)

    Article  Google Scholar 

  321. G. Mestl, N.I. Maksimova, N. Keller, V.V. Roddatis, R. Schlögl: Carbon nanofilaments in heterogeneous catalysis: An industrial application for new carbon materials?, Angew. Chem. Int. Ed. Engl. 40, 2066–2068 (2001)

    Article  Google Scholar 

  322. N. Muradov: Catalysis of methane decomposition over elemental carbon, Catal. Commun. 2, 89–94 (2001)

    Article  Google Scholar 

  323. J.E. Fischer, A.T. Johnson: Electronic properties of carbon nanotubes, Curr. Opin. Solid State Mater. Sci. 4, 28–33 (1999)

    Article  Google Scholar 

  324. M. Menon, A.N. Andriotis, G.E. Froudakis: Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls, Chem. Phys. Lett. 320, 425–434 (2000)

    Article  Google Scholar 

  325. N. Ishigami, H. Ago, Y. Motoyama, M. Takasaki, M. Shinagawa, K. Takahashi, T. Ikuta, M. Tsuji: Microreactor utilizing a vertically-aligned carbon nanotube array grown inside the channels, Chem. Commun., 1626 (2007)

    Google Scholar 

  326. G.G. Wildgoose, C.E. Banks, R.G. Compton: Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications, Small 2, 182–193 (2006)

    Article  Google Scholar 

  327. T. Kyotani, S. Nakazaki, W.-H. Xu, A. Tomita: Chemical modification of the inner walls of carbon nanotubes by HNO_3 oxidation, Carbon 39, 782–785 (2001)

    Article  Google Scholar 

  328. Z.J. Liu, Z.Y. Yuan, W. Zhou, L.M. Peng, Z. Xu: Co/carbon nanotubes monometallic system: The effects of oxidation by nitric acid, PhysChemChemPhys 3, 2518–2521 (2001)

    Google Scholar 

  329. R. Giordano, P. Serp, P. Kalck, Y. Kihn, J. Schreiber, C. Marhic, J.-L. Duvail: Preparation of rhodium supported on carbon canotubes catalysts via surface mediated organometallic reaction, Eur. J. Inorg. Chem. 2003, 610–617 (2003)

    Article  Google Scholar 

  330. A. Carrillo, J.A. Swartz, J.M. Gamba, R.S. Kane, N. Chakrapani, B. Wei, P.M. Ajayan: Noncovalent functionalization of graphite and carbon nanotubes with polymer multilayers and gold nanoparticles, Nano Lett. 3, 1437–1440 (2003)

    Article  Google Scholar 

  331. Z. Liu, X. Lin, J.Y. Lee, W. Zhang, M. Han, L.M. Gan: Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells, Langmuir 18, 4054–4060 (2002)

    Article  Google Scholar 

  332. H.-B. Chen, J.D. Lin, Y. Cai, X.Y. Wang, J. Yi, J. Wang, G. Wei, Y.Z. Lin, D.W. Liao: Novel multi-walled nanotube-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure, Appl. Surf. Sci. 180, 328–335 (2001)

    Article  Google Scholar 

  333. Y. Zhang, H.B. Zhang, G.D. Lin, P. Chen, Y.Z. Yuan, K.R. Tsai: Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst, Appl. Catal. A 187, 213–224 (1999)

    Article  Google Scholar 

  334. M.S. Dresselhaus, K.A. Williams, P.C. Eklund: Hydrogen adsorption in carbon materials, Mater. Res. Soc. Bull. 24, 45–50 (1999)

    Google Scholar 

  335. H.-M. Cheng, Q.-H. Yang, C. Liu: Hydrogen storage in carbon nanotubes, Carbon 39, 1447–1454 (2001)

    Article  Google Scholar 

  336. G.G. Tibbetts, G.P. Meisner, C.H. Olk: Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers, Carbon 39, 2291–2301 (2001)

    Article  Google Scholar 

  337. F.L. Darkrim, P. Malbrunot, G.P. Tartaglia: Review of hydrogen storage adsorption in carbon nanotubes, Int. J. Hydrogen Energy 27, 193–202 (2002)

    Article  Google Scholar 

  338. G.E. Froudakis: Hydrogen interaction with carbon nanotubes: a review of ab initio studies, J. Phys. Condens. Matter 14, R453–R465 (2002)

    Article  Google Scholar 

  339. M. Hirscher, M. Becher: Hydrogen storage in carbon nanotubes, J. Nanosci. Nanotechnol. 3(1/2), 3–17 (2003)

    Article  Google Scholar 

  340. P. Kowalczyk, R. Hołyst, M. Terrones, H. Terrones: Hydrogen storage in nanoporous carbon materials: myth and facts, PhysChemChemPhys 9(15), 1786–1792 (2007)

    Google Scholar 

  341. C. Park, P.E. Anderson, C.D. Tan, R. Hidalgo, N. Rodriguez: Further studies of the interaction of hydrogen with graphite nanofibers, J. Phys. Chem. B 103, 10572–10581 (1999)

    Article  Google Scholar 

  342. S.M. Lee, H.Y. Lee: Hydrogen storage in single-walled carbon nanotubes, Appl. Phys. Lett. 76, 2877–2879 (2000)

    Article  Google Scholar 

  343. X. Zhang, D. Cao, J. Chen: Hydrogen adsorption storage on single-walled carbon nanotube arrays by a combination of classical potential and density functional theory, J. Phys. Chem. B 107, 4942–4950 (2003)

    Article  Google Scholar 

  344. H.M. Cheng, G.P. Pez, A.C. Cooper: Mechanism of hydrogen sorption in single-walled carbon nanotubes, J. Am. Chem. Soc. 123, 5845–5846 (2001)

    Article  Google Scholar 

  345. C.-H. Chen, C.-C. Huang: Hydrogen storage by KOH-modified multi-walled carbon nanotubes, Int. J. Hydrogen Energy 32, 237–246 (2007)

    Article  Google Scholar 

  346. M.A. de la Casa-Lillo, F. Lamari-Darkrim, D. Cazorla-Amoros, A. Linares-Solano: Hydrogen storage in activated carbons and activated carbon fibers, J. Phys. Chem. B 106, 10930–10934 (2002)

    Article  Google Scholar 

  347. P. Marinelli, R. Pellenq, J. Conard: H stocké dans les carbones un site légèrement métastable, Natl. Conf. Mater., Tours (2002), AF-14-020

    Google Scholar 

  348. G. Mpourmpakis, G.E. Froudakis, G.P. Lithoxoos, J. Samios: Effect of curvature and chirality for hydrogen storage in single-walled carbon nanotubes: a combined ab initio and Monte Carlo investigation, J. Chem. Phys. 126, 144704 (2007)

    Article  Google Scholar 

  349. C.I. Weng, S.P. Ju, K.C. Fang, F.P. Chang: Atomistic study of the influences of size, VDW distance and arrangement of carbon nanotubes on hydrogen storage, Comput. Mater. Sci. 40, 300–308 (2007)

    Article  Google Scholar 

  350. A.L.M. Reddy, S. Ramaprabhu: Hydrogen storage properties of nanocrystalline Pt dispersed multi-walled carbon nanotubes, Int. J. Hydrogen Energy 32, 3998–4004 (2007)

    Article  Google Scholar 

  351. A. Kusnetzova, D.B. Mawhinney, V. Naumenko, J.T. Yates, J. Liu, R.E. Smalley: Enhancement of adsorption inside of single-walled nanotubes: Opening the entry ports, Chem. Phys. Lett. 321, 292–296 (2000)

    Article  Google Scholar 

  352. G.E. Gadd, M. Blackford, S. Moricca, N. Webb, P.J. Evans, A.M. Smith, G. Jacobsen, S. Leung, A. Day, Q. Hua: The worldʼs smallest gas cylinders?, Science 277, 933–936 (1997)

    Article  Google Scholar 

  353. Z. Mao, S.B. Sinnott: A computational study of molecular diffusion and dynamic flow through carbon nanotubes, J. Phys. Chem. B 104, 4618–4624 (2000)

    Article  Google Scholar 

  354. Z. Mao, S.B. Sinnott: Separation of organic molecular mixtures in carbon nanotubes and bundles: Molecular dynamics simulations, J. Phys. Chem. B 105, 6916–6924 (2001)

    Article  Google Scholar 

  355. H. Chen, D.S. Sholl: Rapid diffusion of CH_4/H_2 mixtures in single-walled carbon nanotubes, J. Am. Chem. Soc. 126, 7778–7779 (2004)

    Article  Google Scholar 

  356. C. Gu, G.-H. Gao, Y.X. Yu, T. Nitta: Simulation for separation of hydrogen and carbon monoxide by adsorption on single-walled carbon nanotubes, Fluid Phase Equilib. 194/197, 297–307 (2002)

    Article  Google Scholar 

  357. R.Q. Long, R.T. Yang: Carbon nanotubes as superior sorbent for dioxine removal, J. Am. Chem. Soc. 123, 2058–2059 (2001)

    Article  Google Scholar 

  358. Y.H. Li, S. Wang, A. Cao, D. Zhao, X. Zhang, C. Xu, Z. Luan, D. Ruan, J. Liang, D. Wu, B. Wei: Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes, Chem. Phys. Lett. 350, 412–416 (2001)

    Article  Google Scholar 

  359. Y.H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, B. Wei: Lead adsorption on carbon nanotubes, Chem. Phys. Lett. 357, 263–266 (2002)

    Article  Google Scholar 

  360. C. Park, E.S. Engel, A. Crowe, T.R. Gilbert, N.M. Rodriguez: Use of carbon nanofibers in the removal of organic solvents from water, Langmuir 16, 8050–8056 (2000)

    Article  Google Scholar 

  361. E. Diaz, S. Ordonez, A. Vega: Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites, J. Colloid Interf. Sci. 305, 7–16 (2007)

    Article  Google Scholar 

  362. C.-H. Wu: Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics, J. Hazard. Mater. 144, 93–100 (2007)

    Article  Google Scholar 

  363. C. Lu, F. Su: Adsorption of natural organic matter by carbon nanotubes, Sep. Purif. Technol. 58, 113–121 (2007)

    Article  Google Scholar 

  364. C. Ye, Q.-M. Gong, F.-P. Lu: Adsorption of uraemic toxins on carbon nanotubes, Sep. Purif. Technol. 58, 2–6 (2007)

    Article  Google Scholar 

  365. X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian, Z. Jia: Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes, Chem. Phys. Lett. 376, 154–158 (2003)

    Article  Google Scholar 

  366. P. Kondratyuk, J.T. Yates: Nanotubes as molecular sponges: the adsorption of CCl_4, Chem. Phys. Lett. 383, 314–316 (2004)

    Article  Google Scholar 

  367. C. Lu, H. Chiu: Adsorption of zinc(II) from water with purified carbon nanotubes, Chem. Eng. Sci. 61, 1138 (2006)

    Article  Google Scholar 

  368. A. Stafiej, K. Pyrzynska: Adsorption of heavy metal ions with carbon nanotubes, Sep. Purif. Technol. 58, 49–52 (2007)

    Article  Google Scholar 

  369. H. Wang, A. Zhou, F. Peng, H. Yu, J. Yang: Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II), J. Colloid Interf. Sci. 316, 277–283 (2007)

    Article  Google Scholar 

  370. C. Chen, X. Li, D. Zhao, X. Tan, X. Wang: Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanotubes, Colloids Surf. A Physicochem. Eng. Asp. 302, 449–454 (2007)

    Article  Google Scholar 

  371. A. Huczko, H. Lange, E. Calko, H. Grubek-Jaworska, P. Droszcz: Physiological testing of carbon nanotubes: Are they asbestos-like?, Fuller. Sci. Technol. 9, 251–254 (2001)

    Article  Google Scholar 

  372. A.A. Shvedova, V. Castranova, E.R. Kisin, D. Schwegler-Berry, A.R. Murray, V.Z. Gandelsman, A.M. Maynard, P. Baron: Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells, Toxical Environ. Health A 66, 1909–1926 (2003)

    Article  Google Scholar 

  373. C.W. Lam, J.T. James, R. McCluskey, R.L. Hunter: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation, Toxicol. Sci. 77, 126–134 (2004)

    Article  Google Scholar 

  374. D. Pantarotto, J.P. Briand, M. Prato, A. Bianco: Translocation of bioactive peptides across cell membranes by carbon nanotubes, Chem. Commun., 16–17 (2004)

    Google Scholar 

  375. C. Salvador-Morales, E. Flahaut, E. Sim, J. Sloan, M.L.H. Green, R.B. Sim: Complement activation and protein adsorption by carbon nanotubes, Mol. Immun. 43, 193–201 (2006)

    Article  Google Scholar 

  376. M.P. Mattson, R.C. Haddon, A.M. Rao: Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth, J. Mol. Neurosci. 14, 175–182 (2000)

    Article  Google Scholar 

  377. J.J. Davis, M.L.H. Green, H.A.O. Hill, Y.C. Leung, P.J. Sadler, J. Sloan, A.V. Xavier, S.C. Tsang: The immobilization of proteins in carbon nanotubes, Inorg. Chim. Acta 272, 261–266 (1998)

    Article  Google Scholar 

  378. R.J. Chen, Y. Zhang, D. Wang, H. Dai: Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc. 123, 3838–3839 (2001)

    Article  Google Scholar 

  379. M. Shim, N.W.S. Kam, R.J. Chen, Y. Li, H. Dai: Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition, Nano Lett. 2, 285–288 (2002)

    Article  Google Scholar 

  380. C. Dwyer, M. Guthold, M. Falvo, S. Washburn, R. Superfine, D. Erie: DNA-functionalized single-walled carbon nanotubes, Nanotechnology 13, 601–604 (2002)

    Article  Google Scholar 

  381. H. Huang, S. Taylor, K. Fu, Y. Lin, D. Zhang, T.W. Hanks, A.M. Rao, Y. Sun: Attaching proteins to carbon nanotubes via diimide-activated amidation, Nano Lett. 2, 311–314 (2002)

    Article  Google Scholar 

  382. C.V. Nguyen, L. Delzeit, A.M. Cassell, J. Li, J. Han, M. Meyyappan: Preparation of nucleic acid functionalized carbon nanotube arrays, Nano Lett. 2, 1079–1081 (2002)

    Article  Google Scholar 

  383. B.R. Azamian, J.J. Davis, K.S. Coleman, C.B. Bagshaw, M.L.H. Green: Bioelectrochemical single-walled carbon nanotubes, J. Am. Chem. Soc. 124, 12664–12665 (2002)

    Article  Google Scholar 

  384. E. Katz, I. Willner: Biomolecule-functionalized carbon nanotubes: Applications in nanobioelectronics, ChemPhysChem 5, 1084–1104 (2004)

    Article  Google Scholar 

  385. J. Wang: Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis 17, 7–14 (2005)

    Article  Google Scholar 

  386. T. Laha, A. Agarwal, T. McKechnie, S. Seal: Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite, Mater. Sci. Eng. A 381, 249–258 (2004)

    Article  Google Scholar 

  387. T. Noguchi, A. Magario, S. Fukazawa, S. Shimizu, J. Beppu, M. Seki: Carbon nanotube/aluminium composites with uniform dispersion, Mater. Trans. 45, 602–604 (2004)

    Article  Google Scholar 

  388. Y.B. Li, Q. Ya, B.Q. Wei, J. Liang, D.H. Wu: Processing of a carbon nanotubes-Fe_82P_18 metallic glass composite, J. Mater. Sci. Lett. 17, 607–609 (1998)

    Article  Google Scholar 

  389. A. Goyal, D.A. Wiegand, F.J. Owens, Z. Iqbal: Enhanced yield strength in iron nanocomposite with in situ grown single-wall carbon nanotubes, J. Mater. Res. 21, 522–528 (2006)

    Article  Google Scholar 

  390. K.T. Kim, K.H. Lee, S.I. Cha, C.-B. Mo, S.H. Hong: Characterization of carbon nanotubes/Cu nanocomposites processed by using nano-sized Cu powders, Mater. Res. Soc. Symp. Proc. 821, 111–116 (2004)

    Article  Google Scholar 

  391. F. Zhang, J. Shen, J. Sun: Processing and properties of carbon nanotubes-nano-WC-Co composites, Mater. Sci. Eng. A 381, 86–91 (2004)

    Article  Google Scholar 

  392. C.L. Xu, B.Q. Wei, R.Z. Ma, J. Liang, X.K. Ma, D.H. Wu: Fabrication of aluminum-carbon nanotube composites and their electrical properties, Carbon 37, 855–858 (1999)

    Article  Google Scholar 

  393. T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito: Processing of carbon nanotube reinforced aluminum composite, J. Mater. Res. 13, 2445–2449 (1998)

    Article  Google Scholar 

  394. C.F. Deng, Y.X. Ma, P. Zhang, X.X. Zhang, D.Z. Wang: Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes, Mater. Lett. 62, 2301–2303 (2008)

    Article  Google Scholar 

  395. T. Kuzumaki, O. Ujiie, H. Ichinose, K. Ito: Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite, Adv. Eng. Mater. 2, 416–418 (2000)

    Article  Google Scholar 

  396. E. Carreno-Morelli, J. Yang, E. Couteau, K. Hernadi, J.W. Seo, C. Bonjour, L. Forro, R. Schaller: Carbon nanotube/magnesium composites, Phys. Status Solidi (a) 201, R53–R55 (2004)

    Article  Google Scholar 

  397. Z. Bian, R.J. Wang, W.H. Wang, T. Zhang, A. Inoue: Carbon-nanotube-reinforced Zr-based bulk metallic glass composites and their properties, Adv. Funct. Mater. 14, 55–63 (2004)

    Article  Google Scholar 

  398. S.R. Dong, J.P. Tu, X.B. Zhang: An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes, Mater. Sci. Eng. A 313, 83–87 (2001)

    Article  Google Scholar 

  399. J. Wang, G. Chen, M. Wang, M.P. Chatrathi: Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates, Analyst (Cambridge) 129, 512–515 (2004)

    Article  Google Scholar 

  400. C.S. Goh, J. Wei, L.C. Lee, M. Gupta: Simultaneous enhancement in strength and ductility reinforcing magnesium with carbon nanotubes, Mater. Sci. Eng. A 423, 153–156 (2006)

    Article  Google Scholar 

  401. Q. Ngo, B.A. Cruden, A.M. Cassell, M.D. Walker, Q. Ye, J.E. Koehne, M. Meyyappan, J. Li, C.Y. Yang: Thermal conductivity of carbon nanotube composite films, Mater. Res. Soc. Symp. Proc., Vol. 812 (2004) pp. 179–184

    Google Scholar 

  402. X.H. Chen, C.S. Chen, H.N. Xiao, F.Q. Cheng, G. Zhang, G.J. Yi: Corrosion behavior of carbon nanotubes-Ni composite coating, Surf. Coat. Technol. 191, 351–356 (2005)

    Article  Google Scholar 

  403. X.H. Chen, C.S. Chen, H.N. Xiao, H.B. Liu, L.P. Zhou, S.L. Li, G. Zhang: Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits, Tribol. Int. 39, 22–28 (2006)

    Article  Google Scholar 

  404. Z. Yang, H. Xu, M.-K. Li, Y.-L. Shi, Y. Huang, H.-L. Li: Preparation and properties of Ni-P/single-walled carbon nanotubes composite coatings by means of electroless plating, Thin Solid Films 466, 86–91 (2004)

    Article  Google Scholar 

  405. A. Peigney, C. Laurent: Carbon nanotubes ceramic composites. In: Ceramic Matrix Composites: Microstructure, Properties and Applications, ed. by I.M. Low (Woodhead, Cambridge 2006) pp. 309–333

    Chapter  Google Scholar 

  406. C. Laurent, A. Peigney, O. Dumortier, A. Rousset: Carbon nanotubes-Fe-alumina nanocomposites. Part II: Microstructure and mechanical properties of the hot-pressed composites, J. Eur. Ceram. Soc. 18, 2005–2013 (1998)

    Article  Google Scholar 

  407. A. Peigney, C. Laurent, E. Flahaut, A. Rousset: Carbon nanotubes in novel ceramic matrix nanocomposites, Ceram. Int. 26, 677–683 (2000)

    Article  Google Scholar 

  408. E. Flahaut, A. Peigney, C. Laurent, C. Marlière, F. Chastel, A. Rousset: Carbon nanotube-metal-oxide nanocomposites: Microstructure, electrical conductivity and mechanical properties, Acta Mater. 48, 3803–3812 (2000)

    Article  Google Scholar 

  409. J.W. An, D.H. You, D.S. Lim: Tribological properties of hot-pressed alumina-CNT composites, Wear 255, 677–681 (2003)

    Article  Google Scholar 

  410. J. Ning, J. Zhang, Y. Pan, J. Guo: Surfactants assisted processing of carbon nanotube-reinforced SiO_2 matrix composites, Ceram. Int. 30, 63–67 (2004)

    Article  Google Scholar 

  411. Q. Huang, L. Gao: Manufacture and electrical properties of multiwalled carbon nanotube/BaTiO_3 nanocomposite ceramics, J. Mater. Chem. 14, 2536–2541 (2004)

    Article  Google Scholar 

  412. J. Fan, D. Zhao, M. Wu, Z. Xu, J. Song: Preparation and microstructure of multi-wall carbon nanotubes-toughened Al2O3 composite, J. Am. Ceram. Soc. 89, 750–753 (2006)

    Article  Google Scholar 

  413. A. Peigney, S. Rul, F. Lefevre-Schlick, C. Laurent: Densification during hot-pressing of carbon nanotube metal-ceramic composites, J. Eur. Ceram. Soc. 27, 2183–2193 (2007)

    Article  Google Scholar 

  414. J. Sun, L. Gao, W. Li: Colloidal processing of carbon nanotube/alumina composites, Chem. Mater. 14, 5169–5172 (2002)

    Article  Google Scholar 

  415. G.D. Zhan, J.D. Kuntz, J. Wan, A.K. Mukherjee: Single-wall carbon nanotubes as attractive toughening agents in alumina-based composites, Nat. Mater. 2, 38–42 (2003)

    Article  Google Scholar 

  416. S.I. Cha, K.T. Kim, K.H. Lee, C.B. Mo, S.H. Hong: Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process, Scr. Mater. 53, 793–797 (2005)

    Article  Google Scholar 

  417. C.B. Mo, S.I. Cha, K.T. Kim, K.H. Lee, S.H. Hong: Fabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol-gel process, Mater. Sci. Eng. A 395, 124–128 (2005)

    Article  Google Scholar 

  418. X. Wang, N.P. Padture, H. Tanaka: Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites, Nat. Mater. 3, 539–544 (2004)

    Article  Google Scholar 

  419. W.A. Curtin, B.W. Sheldon: CNT-reinforced ceramics and metals, Mater. Today 7, 44–49 (2004)

    Article  Google Scholar 

  420. Z. Xia, L. Riester, W.A. Curtin, H. Li, B.W. Sheldon, J. Liang, B. Chang, J.M. Xu: Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites, Acta Mater. 52, 931–944 (2004)

    Article  Google Scholar 

  421. D.S. Lim, J.W. An, H.J. Lee: Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites, Wear 252, 512–517 (2002)

    Article  Google Scholar 

  422. D.-S. Lim, D.-H. You, H.-J. Choi, S.-H. Lim, H. Jang: Effect of CNT distribution on tribological behavior of alumina-CNT composites, Wear 259, 539–544 (2005)

    Article  Google Scholar 

  423. Z.H. Xia, J. Lou, W.A. Curtin: A multiscale experiment on the tribological of aligned carbon nanotube/ceramic composites, Scr. Mater. 58, 223–226 (2008)

    Article  Google Scholar 

  424. G.-D. Zhan, J.D. Kuntz, H. Wang, C.-M. Wang, A.K. Mukherjee: Anisotropic thermal properties of single-wall-carbon-nanotube-reinforced nanoceramics, Philos. Mag. Lett. 84, 419–423 (2004)

    Article  Google Scholar 

  425. Q. Huang, L. Gao, Y. Liu, J. Sun: Sintering and thermal properties of multiwalled carbon nanotube-BaTiO3 composites, J. Mater. Chem. 15, 1995–2001 (2005)

    Article  Google Scholar 

  426. G.-D. Zhan, J.D. Kuntz, J.E. Garay, A.K. Mukherjee: Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes, Appl. Phys. Lett. 83, 1228–1230 (2003)

    Article  Google Scholar 

  427. S. Rul, F. Lefevre-Schlick, E. Capria, C. Laurent, A. Peigney: Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites, Acta Mater. 52, 1061–1067 (2004)

    Article  Google Scholar 

  428. S.-L. Shi, J. Liang: Electronic transport properties of multiwall carbon nanotubes/yttria-stabilized zirconia composites, J. Appl. Phys. 101, 023708–5 (2007)

    Article  Google Scholar 

  429. A. Peigney, E. Flahaut, C. Laurent, F. Chastel, A. Rousset: Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion, Chem. Phys. Lett. 352, 20–25 (2002)

    Article  Google Scholar 

  430. G.-D. Zhan, J.D. Kuntz, A.K. Mukherjee, P. Zhu, K. Koumoto: Thermoelectric properties of carbon nanotube/ceramic nanocomposites, Scr. Mater. 54, 77–82 (2006)

    Article  Google Scholar 

  431. P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth: Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite, Science 265, 1212–1214 (1994)

    Article  Google Scholar 

  432. J.N. Coleman, U. Khan, Y.K. Gunʼko: Mechanical reinforcement of polymers using carbon nanotubes, Adv. Mater. 18, 689–706 (2006)

    Article  Google Scholar 

  433. R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, K.I. Winey: Aligned single-wall carbon nanotubes in composites by melt processing methods, Chem. Phys. Lett. 330, 219–225 (2000)

    Article  Google Scholar 

  434. L.S. Schadler, S.C. Giannaris, P.M. Ajayan: Load transfer in carbon nanotube epoxy composites, Appl. Phys. Lett. 73, 3842–3844 (1998)

    Article  Google Scholar 

  435. S.J.V. Frankland, A. Caglar, D.W. Brenner, M. Griebel: Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces, J. Phys. Chem. B 106, 3046–3048 (2002)

    Article  Google Scholar 

  436. H.D. Wagner: Nanotube-polymer adhesion: A mechanics approach, Chem. Phys. Lett. 361, 57–61 (2002)

    Article  Google Scholar 

  437. P.M. Ajayan, L.S. Schadler, C. Giannaris, A. Rubio: Single-walled carbon nanotube-polymer composites: Strength and weakness, Adv. Mater. 12, 750–753 (2000)

    Article  Google Scholar 

  438. X. Gong, J. Liu, S. Baskaran, R.D. Voise, J.S. Young: Surfactant-assisted processing of carbon nanotube/polymer composites, Chem. Mater. 12, 1049–1052 (2000)

    Article  Google Scholar 

  439. E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, T.W. Chou: Carbon nanotube/carbon fiber hybrid multiscale composites, J. Appl. Phys. 91, 6034–6037 (2002)

    Article  Google Scholar 

  440. F.H. Gojny, M.H.G. Wichmann, U. Kopke, B. Fiedler, K. Schulte: Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content, Compos. Sci. Technol. 64, 2363–2371 (2004)

    Article  Google Scholar 

  441. F.H. Gojny, M.H.G. Wichmann, B. Fiedler, K. Schulte: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study, Compos. Sci. Tech. 65, 2300–2313 (2005)

    Article  Google Scholar 

  442. H. Rajoria, N. Jalili: Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites, Compos. Sci. Tech. 65, 2079–2093 (2005)

    Article  Google Scholar 

  443. M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, J.E. Fischer: Carbon nanotube composites for thermal management, Appl. Phys. Lett. 80, 2767–2769 (2002)

    Article  Google Scholar 

  444. F.H. Gojny, K. Schulte: Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites, Compos. Sci. Technol. 64, 2303–2308 (2004)

    Article  Google Scholar 

  445. G. Pecastaings, P. Delhaes, A. Derre, H. Saadaoui, F. Carmona, S. Cui: Role of interfacial effects in carbon nanotube/epoxy nanocomposite behavior, J. Nanosci. Nanotechnol. 4, 838–843 (2004)

    Article  Google Scholar 

  446. S. Barrau, P. Demont, A. Peigney, C. Laurent, C. Lacabanne: Effect of palmitic acid on the electrical conductivity of carbon nanotubes-polyepoxy composite, Macromolecules 36, 9678–9680 (2003)

    Article  Google Scholar 

  447. S. Barrau, P. Demont, A. Peigney, C. Laurent, C. Lacabanne: DC and AC conductivity of carbon nanotubes-polyepoxy composites, Macromolecules 36, 5187–5194 (2003)

    Article  Google Scholar 

  448. J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, A.H. Windle: Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties, Polymer 40, 5967–5971 (1999)

    Article  Google Scholar 

  449. Z. Jin, K.P. Pramoda, G. Xu, S.H. Goh: Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites, Chem. Phys. Lett. 337, 43–47 (2001)

    Article  Google Scholar 

  450. Z. Jin, K.P. Pramoda, S.H. Goh, G. Xu: Poly(vinylidene fluoride)-assisted melt-blending of multi-walled carbon nanotube/poly(methyl methacrylate) composites, Mater. Res. Bull. 37, 271–278 (2002)

    Article  Google Scholar 

  451. C.A. Cooper, D. Ravich, D. Lips, J. Mayer, H.D. Wagner: Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix, Compos. Sci. Technol. 62, 1105–1112 (2002)

    Article  Google Scholar 

  452. J.M. Benoit, B. Corraze, S. Lefrant, W.J. Blau, P. Bernier, O. Chauvet: Transport properties of PMMA-carbon nanotubes composites, Synth. Met. 121, 1215–1216 (2001)

    Article  Google Scholar 

  453. J.M. Benoit, B. Corraze, O. Chauvet: Localization, Coulomb interactions, and electrical heating in single-wall carbon nanotubes/polymer composites, Phys. Rev. B 65, 241405/1–241405/4 (2002)

    Article  Google Scholar 

  454. F. Du, R.C. Scogna, W. Zhou, S. Brand, J.E. Fischer, K.I. Winey: Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity, Macromolecules 37, 9048–9055 (2004)

    Article  Google Scholar 

  455. T. Kashiwagi, F. Du, K.I. Winey, K.M. Groth, J.R. Shields, R.H. Harris Jr., J.F. Douglas: Flammability properties of PMMA-single walled carbon nanotube nanocomposites, Polym. Mater. Sci. Eng. 91, 90–91 (2004)

    Google Scholar 

  456. B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin: Macroscopic fibers and ribbons of oriented carbon nanotubes, Science 290, 1331–1334 (2000)

    Article  Google Scholar 

  457. B. Vigolo, P. Poulin, M. Lucas, P. Launois, P. Bernier: Improved structure and properties of single-wall carbon nanotube spun fibers, Appl. Phys. Lett. 11, 1210–1212 (2002)

    Article  Google Scholar 

  458. P. Poulin, B. Vigolo, P. Launois: Films and fibers of oriented single wall nanotubes, Carbon 40, 1741–1749 (2002)

    Article  Google Scholar 

  459. K. Jiang, Q. Li, S. Fan: Spinning continuous carbon nanotube yarn, Nature 419, 801 (2002)

    Article  Google Scholar 

  460. M. Zhang, K.R. Atkinson, R.H. Baughman: Multifunctional carbon nanotube yarns by downsizing an ancient technology, Science 306, 1356–1361 (2004)

    Google Scholar 

  461. J. Steinmetz, M. Glerup, M. Paillet, P. Bernier, M. Holzinger: Production of pure nanotube fibers using a modified wet-spinning method, Carbon 43, 2397–2400 (2005)

    Article  Google Scholar 

  462. A.B. Dalton, S. Collins, E. Munoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, R.H. Baughman: Super-tough carbon-nanotube fibers, Nature 423, 703 (2003)

    Article  Google Scholar 

  463. M.S.P. Shaffer, A.H. Windle: Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites, Adv. Mater. 11, 937–941 (1999)

    Article  Google Scholar 

  464. L. Jin, C. Bower, O. Zhou: Alignment of carbon nanotubes in a polymer matrix by mechanical stretching, Appl. Phys. Lett. 73, 1197–1199 (1998)

    Article  Google Scholar 

  465. H.D. Wagner, O. Lourie, Y. Feldman, R. Tenne: Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix, Appl. Phys. Lett. 72, 188–190 (1998)

    Article  Google Scholar 

  466. H.D. Wagner, O. Lourie, X.F. Zhou: Macrofragmentation and microfragmentation phenomena in composite materials, Compos. Part A 30, 59–66 (1998)

    Article  Google Scholar 

  467. J.R. Wood, Q. Zhao, H.D. Wagner: Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy, Compos. Part A 32, 391–399 (2001)

    Article  Google Scholar 

  468. Q. Zhao, J.R. Wood, H.D. Wagner: Using carbon nanotubes to detect polymer transitions, J. Polym. Sci. B 39, 1492–1495 (2001)

    Article  Google Scholar 

  469. M. Cochet, W.K. Maser, A.M. Benito, M.A. Callejas, M.T. Martinesz, J.M. Benoit, J. Schreiber, O. Chauvet: Synthesis of a new polyaniline/nanotube composite: In-situ polymerisation and charge transfer through site-selective interaction, Chem. Commun., 1450–1451 (2001)

    Google Scholar 

  470. D. Qian, E.C. Dickey, R. Andrews, T. Rantell: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites, Appl. Phys. Lett. 76, 2868–2870 (2000)

    Article  Google Scholar 

  471. V. Datsyuk, C. Guerret-Piecourt, S. Dagreou, L. Billon, J.-C. Dupin, E. Flahaut, A. Peigney, C. Laurent: Double walled carbon nanotube/polymer composites via in-situ nitroxide mediated polymerisation of amphiphilic block copolymers, Carbon 43, 873–876 (2005)

    Article  Google Scholar 

  472. R. Blake, Y.K. Gunʼko, J. Coleman, M. Cadek, A. Fonseca, J.B. Nagy, W.J. Blau: A generic organometallic approach toward ultra-strong carbon nanotube polymer composites, J. Am. Chem. Soc. 126, 10226–10227 (2004)

    Article  Google Scholar 

  473. T. Kashiwagi, E. Grulke, J. Hilding, K. Groth, R. Harris, K. Butler, J. Shields, S. Kharchenko, J. Douglas: Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites, Polymer 45, 4227–4239 (2004)

    Article  Google Scholar 

  474. C. Wei, D. Srivastava, K. Cho: Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites, Los Alamos Nat. Lab., Preprint Archive, Condensed Matter (archiv:cond-mat/0203349), 1–11 (2002)

    Google Scholar 

  475. J.C. Grunlan, M.V. Bannon, A.R. Mehrabi: Latex-based, single-walled nanotube composites: processing and electrical conductivity, Polym. Prepr. 45, 154–155 (2004)

    Google Scholar 

  476. J.C. Grunlan, A.R. Mehrabi, M.V. Bannon, J.L. Bahr: Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold, Adv. Mater. (Weinheim) 16, 150–153 (2004)

    Article  Google Scholar 

  477. C. Pirlot, I. Willems, A. Fonseca, J.B. Nagy, J. Delhalle: Preparation and characterization of carbon nanotube/polyacrylonitrile composites, Adv. Eng. Mater. 4, 109–114 (2002)

    Article  Google Scholar 

  478. H. Lam, H. Ye, Y. Gogotsi, F. Ko: Structure and properties of electrospun single-walled carbon nanotubes reinforced nanocomposite fibrils by co-electrospinning, Polym. Prepr. 45, 124–125 (2004)

    Google Scholar 

  479. L. Cao, H. Chen, M. Wang, J. Sun, X. Zhang, F. Kong: Photoconductivity study of modified carbon nanotube/oxotitanium phthalocyanine composites, J. Phys. Chem. B 106, 8971–8975 (2002)

    Article  Google Scholar 

  480. I. Musa, M. Baxendale, G.A.J. Amaratunga, W. Eccleston: Properties of regular poly(3-octylthiophene)/multi-wall carbon nanotube composites, Synth. Met. 102, 1250 (1999)

    Article  Google Scholar 

  481. E. Kymakis, I. Alexandou, G.A.J. Amaratunga: Single-walled carbon nanotube-polymer composites: Electrical, optical and structural investigation, Synth. Met. 127, 59–62 (2002)

    Article  Google Scholar 

  482. K. Yoshino, H. Kajii, H. Araki, T. Sonoda, H. Take, S. Lee: Electrical and optical properties of conducting polymer-fullerene and conducting polymer-carbon nanotube composites, Fuller. Sci. Technol. 7, 695–711 (1999)

    Article  Google Scholar 

  483. S.A. Curran, P.M. Ajayan, W.J. Blau, D.L. Carroll, J.N. Coleman, A.B. Dalton, A.P. Davey, A. Drury, B. McCarthy, S. Maier, A. Strevens: A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes. A novel material for molecular optoelectronics, Adv. Mater. 10, 1091–1093 (1998)

    Article  Google Scholar 

  484. P. Fournet, D.F. OʼBrien, J.N. Coleman, H.H. Horhold, W.J. Blau: A carbon nanotube composite as an electron transport layer for M3EH-PPV based light-emitting diodes, Synth. Met. 121, 1683–1684 (2001)

    Article  Google Scholar 

  485. H.S. Woo, R. Czerw, S. Webster, D.L. Carroll, J. Ballato, A.E. Strevens, D. OʼBrien, W.J. Blau: Hole blocking in carbon nanotube-polymer composite organic light-emitting diodes based on poly(m-phenylene vinylene-co-2,5-dioctoxy-p-phenylene vinylene), Appl. Phys. Lett. 77, 1393–1395 (2000)

    Article  Google Scholar 

  486. H.S. Woo, R. Czerw, S. Webster, D.L. Carroll, J.W. Park, J.H. Lee: Organic light emitting diodes fabricated with single wall carbon nanotubes dispersed in a hole conducting buffer: The role of carbon nanotubes in a hole conducting polymer, Synth. Met. 116, 369–372 (2001)

    Article  Google Scholar 

  487. H. Ago, K. Petritsch, M.S.P. Shaffer, A.H. Windle, R.H. Friend: Composites of carbon nanotubes and conjugated polymers for photovoltaic devices, Adv. Mater. 11, 1281–1285 (1999)

    Article  Google Scholar 

  488. B. Maruyama, K. Alam: Carbon nanotubes and nanofibers in composite materials, SAMPE Journal 38, 59–70 (2002)

    Google Scholar 

  489. P. Lambin, A. Fonseca, J.P. Vigneron, J. BʼNagy, A.A. Lucas: Structural and electronic properties of bent carbon nanotubes, Chem. Phys. Lett. 245, 85–89 (1995)

    Article  Google Scholar 

  490. L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen: Pure carbon nanoscale devices: Nanotube heterojunctions, Phys. Rev. Lett. 76, 971–974 (1996)

    Article  Google Scholar 

  491. Z. Yao, H.W.C. Postma, L. Balents, C. Dekker: Carbon nanotube intramolecular junctions, Nature 402, 273–276 (1999)

    Article  Google Scholar 

  492. S.J. Tans, A.R.M. Verschueren, C. Dekker: Room temperature transistor based on single carbon nanotube, Nature 393, 49–52 (1998)

    Article  Google Scholar 

  493. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P. Avouris: Single and multi-wall carbon nanotube field effect transistors, Appl. Phys. Lett. 73, 2447–2449 (1998)

    Article  Google Scholar 

  494. V. Derycke, R. Martel, J. Appenzeller, P. Avouris: Carbon nanotube inter- and intramolecular logic gates, Nano Lett. 1, 453–456 (2001)

    Article  Google Scholar 

  495. P. Kim, C.M. Lieber: Nanotube nanotweezers, Science 286, 2148–2150 (1999)

    Article  Google Scholar 

  496. P.G. Collins, M.S. Arnold, P. Avouris: Engineering carbon nanotubes using electrical breakdown, Science 292, 706–709 (2001)

    Article  Google Scholar 

  497. A.P. Graham, G.S. Duesberg, W. Hoenlein, F. Kreupl, M. Liebau, R. Martin, B. Rajasekharan, W. Pamler, R. Seidel, W. Steinhoegl, E. Unger: How do carbon nanotubes fit into the semiconductor roadmap?, Appl. Phys. A 80, 1141–1151 (2005)

    Article  Google Scholar 

  498. R.H. Baughman, C. Changxing, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. de Rossi, A.G. Rinzler, O. Jaschinki, S. Roth, M. Kertesz: Carbon nanotubes actuators, Science 284, 1340–1344 (1999)

    Article  Google Scholar 

  499. Y. Gao, Y. Bando: Carbon nanothermometer containing gallium, Nature 415, 599 (2002)

    Article  Google Scholar 

  500. C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent: High power electro-chemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett. 70, 1480–1482 (1997)

    Article  Google Scholar 

  501. E. Frackowiak, F. Béguin: Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon 40, 1775–1787 (2002)

    Article  Google Scholar 

  502. C. Portet, P.L. Taberna, P. Simon, E. Flahaut: Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte, J. Power. Sources 139, 371–378 (2005)

    Article  Google Scholar 

  503. E. Frackowiak, K. Jurewicz, K. Szostak, S. Delpeux, F. Béguin: Nanotubular materials as electrodes for supercapacitors, Fuel Process. Technol. 77, 213–219 (2002)

    Article  Google Scholar 

  504. G. Lota, E. Frackowiak, J. Mittal, M. Monthioux: High performance supercapacitor from chromium oxide-nanotubes based electrodes, Chem. Phys. Lett. 434, 73–77 (2007)

    Article  Google Scholar 

  505. R. Hurt, M. Monthioux, A. Kane (Eds.): Toxicology of carbon nanomaterials, Carbon 44(6), 1028–1033 (2006), Special issue

    Google Scholar 

  506. C. Salvador-Morales, E. Flahaut, E. Sim, J. Sloan, M.L.H. Green, R.B. Sim: Complement activation and protein adsorption by carbon nanotubes, Mol. Immun. 43, 193–201 (2006)

    Article  Google Scholar 

  507. C. Salvador-Morales, P. Townsend, E. Flahaut, C. Vénien-Bryan, A. Vlandas, M.L.H. Green, R.B. Sim: Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defence mechanisms, Carbon 45, 607–617 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marc Monthioux , Philippe Serp , Emmanuel Flahaut , Manitra Razafinimanana , Christophe Laurent , Alain Peigney , Wolfgang Bacsa or Jean-Marc Broto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Monthioux, M. et al. (2010). Introduction to Carbon Nanotubes. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics