Skip to main content

Direct Estimation of Biological Growth Properties from Image Data Using the “GRID” Model

  • Conference paper
Image Analysis and Recognition (ICIAR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5627))

Included in the following conference series:

Abstract

Having acquired images of a growing organism, the question arises how they can be used to infer the properties of growth. We address this challenging image understanding problem by using the GRID (Growth as Random Iterated Diffeomorphisms) model for biological growth. In the GRID model, growth patterns are composed of smaller, local deformations, each resulting from elementary biological events (e.g.,cell division). A large number of such biological events, each occurring randomly and independently from one another, results in a visible growth pattern or biological shape changes as seen in images. A biological transformation underlying observed shape changes is a solution to a GRID visible growth differential equation. We propose its automatic generation via direct estimation of the growth magnitudes from image data. The growth magnitude is a GRID parameter that characterizes a local expansion/contraction rate throughout the organism’s domain. The estimation algorithm is based on the unconstrained optimal control problem formulation expressed in Darcyan coordinates of the organism’s domain and consequent application of Polak-Ribiere minimization routine. We demonstrate the proposed inference method using confocal micrographs of the Drosophila wing disc at larval stage of development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bookstein, F.L.: Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  2. Bookstein, F.L.: Biometrics, Biomathematics and the Morphometric Synthesis. Bull. of Math. Biol. 58(2), 313–365 (1996)

    Article  MATH  Google Scholar 

  3. Davatzikos, C.: Spatial Transformation and Registration of Brain Images Using Elastically Deformable Models. Comput. Vision Image Under. 66(2), 207–222 (1997)

    Article  Google Scholar 

  4. Kyriacou, S.K., Davatzikos, C., Zinreich, S.J., Bryan, R.N.: Nonlinear Elastic Registration of Brain Images with Tumor Pathology Using Biomechanical Model. IEEE Trans. Med. Imaging 18(7), 580–592 (1999)

    Article  Google Scholar 

  5. Christensen, G.E., Rabbitt, R.D., Miller, M.I.: A Deformable Neuroanatomy Textbook Based on Viscous Fluid Mechanics. In: Proceedings of 1993 Conf. on Information Sciences and Systems, Johns Hopkins University, pp. 211–216 (1999)

    Google Scholar 

  6. Christensen, G.E., Sarang, C.J., Miller, M.I.: Volumetric Transformation of Brain Anatomy. IEEE Trans. Med. Imaging 16(6), 864–876 (1997)

    Article  Google Scholar 

  7. Bookstein, F.L.: Size and Shape Spaces for Landmark Data in Two Dimensions. Statistical Science 1, 181–242 (1998)

    Article  MATH  Google Scholar 

  8. Khaneja, N., Miller, M., Grenander, U.: Dynamic Programming Generation of Curves on Brain Surfaces. IEEE Trans. Patt. Anal. Mach. Int. 20(11), 1260–1264 (1998)

    Article  Google Scholar 

  9. Srivastava, A., Saini, S., Ding, Z., Grenander, U.: Maximum-Likelihood Estimation of Biological Growth Variables. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 107–118. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Grenander, U.: On the Mathematics of Growth. Quart. Appl. Math. 65, 205–257 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grenander, U., Srivastava, A., Saini, S.: A Pattern-Theoretic Characterization of Biological Growth. IEEE Trans. Med. Imaging 26(5), 648–659 (2007)

    Article  Google Scholar 

  12. Portman, N., Grenander, U., Vrscay, E.R.: New computational methods for the construction of “Darcyan” biological coordinate systems. In: Kamel, M.S., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 143–156. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Carroll, S.B.: Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom. W. W. Norton & Company, NY (2005)

    Google Scholar 

  14. Williams, J.A., Paddock, S.W., Carroll, S.B.: Pattern Formation in a Secondary Field: a Hierarchy of Regulatory Genes Subdivides the Developing Drosophila Wing Disc into Discrete Subregions. Development 117, 571–584 (1993)

    Google Scholar 

  15. Polak, E.: omputational Methods in Optimization: a Unified Approach. Mathematics in Science and Engineering, vol. 77. Academic Press, NY (1971)

    Google Scholar 

  16. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Portman, N., Grenander, U., Vrscay, E.R. (2009). Direct Estimation of Biological Growth Properties from Image Data Using the “GRID” Model. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02611-9_82

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02610-2

  • Online ISBN: 978-3-642-02611-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics