Skip to main content

Algorithms for the Functional Decomposition of Laurent Polynomials

  • Conference paper
Intelligent Computer Mathematics (CICM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5625))

Included in the following conference series:

Abstract

Recent work has detailed the conditions under which univariate Laurent polynomials have functional decompositions. This paper presents algorithms to compute such univariate Laurent polynomial decompositions efficiently and gives their multivariate generalization.

One application of functional decomposition of Laurent polynomials is the functional decomposition of so-called “symbolic polynomials.” These are polynomial-like objects whose exponents are themselves integer-valued polynomials rather than integers. The algebraic independence of X, X n, \(X^{n^2/2}\), etc, and some elementary results on integer-valued polynomials allow problems with symbolic polynomials to be reduced to problems with multivariate Laurent polynomials. Hence we are interested in the functional decomposition of these objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ritt, J.: Prime and composite polynomials. Trans. American Math. Society 23(1), 51–66 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  2. Engstrom, H.T.: Polynomial substitutions. American Journal of Mathematics 63(2), 249–255 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  3. Levi, H.: Composite polynomials with coefficients in an arbitrary field of characteristic zero. American Journal of Mathematics 64(1), 389–400 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barton, D.R., Zippel, R.E.: A polynomial decomposition algorithm. In: Proc. 1976 ACM Symposium on Symbolic and Algebraic Computation, pp. 356–358. ACM Press, New York (1976)

    Google Scholar 

  5. Kozen, D., Landau, S.: Polynomial decomposition algorithms. J. Symbolic Computation 22, 445–456 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zippel, R.E.: Rational function decomposition. In: Proc. ISSAC 2001, pp. 1–6. ACM Press, New York (1991)

    Google Scholar 

  7. Kozen, D., Landau, S., Zippel, R.: Decomposition of algebraic functions. J. Symbolic Computation 22(3), 235–246 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. von zur Gathen, J., Gutierrez, J., Rubio, R.: Multivariate polynomial decomposition. Applied Algebra in Engineering, Communication and Computing 14, 11–31 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zieve, M.E.: Decompositions of Laurent polynomials (2007) Preprint: arXiv.org:0710.1902v1

    Google Scholar 

  10. Watt, S.M.: Making computer algebra more symbolic. In: Proc. Transgressive Computing 2006: A conference in honor of Jean Della Dora, pp. 43–49 (2006)

    Google Scholar 

  11. Watt, S.M.: Two families of algorithms for symbolic polynomials. In: Kotsireas, I., Zima, E. (eds.) Computer Algebra 2006: Latest Advances in Symbolic Algorithms – Proceedings of the Waterloo Workshop, pp. 193–210. World Scientific, Singapore (2007)

    Chapter  Google Scholar 

  12. Watt, S.M.: Symbolic polynomials with sparse exponents. In: Proc. Milestones in Computer Algebra 2008: A conference in honour of Keith Geddes’ 60th birthday, Stonehaven Bay, Trinidad and Tobago, University of Western Ontario, pp. 91–97 (2007) ISBN 978-0-7714-2682-7

    Google Scholar 

  13. Weispfenning, V.: Gröbner bases for binomials with parametric exponents. Technical report, Universität Passau, Germany (2004)

    Google Scholar 

  14. Yokoyama, K.: On systems of algebraic equations with parametric exponents. In: Proc. ISSAC 2004, pp. 312–319. ACM Press, New York (2004)

    Google Scholar 

  15. Pan, W., Wang, D.: Uniform gröbner bases for ideals generated by polynomials with parametric exponents. In: Proc. ISSAC 2006, pp. 269–276. ACM Press, New York (2006)

    Google Scholar 

  16. Watt, S.: Functional decomposition of symbolic polynomials. In: Proc. International Conference on Computatioanl Sciences and its Applications (ICCSA 2008), pp. 353–362. IEEE Computer Society, Los Alamitos (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Watt, S.M. (2009). Algorithms for the Functional Decomposition of Laurent Polynomials. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds) Intelligent Computer Mathematics. CICM 2009. Lecture Notes in Computer Science(), vol 5625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02614-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02614-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02613-3

  • Online ISBN: 978-3-642-02614-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics