Skip to main content

Popular Matchings: Structure and Algorithms

  • Conference paper
Computing and Combinatorics (COCOON 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5609))

Included in the following conference series:

Abstract

An instance of the popular matching problem (POP-M) consists of a set of applicants and a set of posts. Each applicant has a preference list that strictly ranks a subset of the posts. A matching M of applicants to posts is popular if there is no other matching M′ such that more applicants prefer M′ to M than prefer M to M′. This paper provides a characterization of the set of popular matchings for an arbitrary POP-M instance in terms of a structure called the switching graph, a directed graph computable in linear time from the preference lists. We show that the switching graph can be exploited to yield efficient algorithms for a range of associated problems, including the counting and enumeration of the set of popular matchings and computing popular matchings that satisfy various additional optimality criteria. Our algorithms for computing such optimal popular matchings improve those described in a recent paper by Kavitha and Nasre [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings. SIAM Journal on Computing 37, 1030–1045 (2007)

    Google Scholar 

  2. Abraham, D.J., Kavitha, T.: Dynamic matching markets and voting paths. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 65–76. Springer, Heidelberg (2006)

    Google Scholar 

  3. Huang, C.-C., Kavitha, T., Michail, D., Nasre, M.: Bounded unpopularity matchings. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 127–137. Springer, Heidelberg (2008)

    Google Scholar 

  4. Irving, R.W., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Rank-maximal matchings. ACM Transactions on Algorithms 2, 602–610 (2006)

    Google Scholar 

  5. Kavitha, T., Nasre, M.: Optimal Popular Matchings. In: Proceedings of MATCH-UP: Matching Under Preferences - Algorithms and Complexity, satellite workshop of ICALP 2008 (2008)

    Google Scholar 

  6. Mahdian, M.: Random popular matchings. In: 7th ACM Conference on Electronic Commerce, pp. 238–242 (2006)

    Google Scholar 

  7. Manlove, D.F., Sng, C.T.S.: Popular Matchings in the capacitated house allocation problem. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 492–503. Springer, Heidelberg (2006)

    Google Scholar 

  8. McCutchen, R.: The least-unpopularity-factor and least-unpopularity-margin criteria for matching problems with one-sided preferences. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 593–604. Springer, Heidelberg (2008)

    Google Scholar 

  9. McDermid, E., Irving, R.: Popular Matchings: Structure and Algorithms, Technical Report TR-2008-292, Department of Computing Science, University of Glasgow (November 2008)

    Google Scholar 

  10. Mestre, J.: Weighted popular matchings. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 715–726. Springer, Heidelberg (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McDermid, E., Irving, R.W. (2009). Popular Matchings: Structure and Algorithms. In: Ngo, H.Q. (eds) Computing and Combinatorics. COCOON 2009. Lecture Notes in Computer Science, vol 5609. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02882-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02882-3_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02881-6

  • Online ISBN: 978-3-642-02882-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics