Skip to main content

An Efficient Decision Procedure for Functional Decomposable Theories Based on Dual Constraints

  • Conference paper
Recent Advances in Constraints (CSCLP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5655))

  • 244 Accesses

Abstract

Over the last decade, first-order constraints have been efficiently used in the artificial intelligence world to model many kinds of complex problems such as: scheduling, resource allocation, computer graphics and bio-informatics. Recently, a new property called decomposability has been introduced and many first-order theories have been proved to be decomposable such as finite or infinite trees, rational and real numbers, linear dense order,...etc. A decision procedure in the form of five rewriting rules has also been developed. It decides if a first-order formula without free variables (proposition) is true or not in any decomposable theory. Unfortunately, this later needs to normalize the initial proposition before starting the solving process. This transformation generates many nested negations and quantifications which greatly slow down the performances of this decision procedure. We present in this paper an efficient decision procedure for functional decomposable theories, i.e. theories whose set of relation is reduced to { = , ≠ }. This new decision procedure does not need to normalize the formulas and transforms any first-order proposition with any logical symbols into a boolean combination of basic formulas which are either equivalent to true or to false. We show the efficiency of our algorithm (in time and space) and compare its performances with those of the classical decision procedure for decomposable theories. Our algorithm is able to solve first-order propositions involving many nested alternated quantifiers of the form \(\exists\bar{x}\forall\bar{y}\) over different functional decomposable theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apt, K.: Principles of constraint programming. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  2. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data bases. Plenum Pub., New York (1978)

    Google Scholar 

  3. Colmerauer, A., Dao, T.: Expressiveness of full first-order constraints in the algebra of finite or infinite trees. Journal of Constraints 8(3), 283–302 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Colmerauer, A.: An introduction to Prolog III. Communication of the ACM 33(7), 68–90 (1990)

    Article  Google Scholar 

  5. Djelloul, K.: A full first-order constraint solver for decomposable theories. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC 2008, Calculemus 2008, and MKM 2008. LNCS (LNAI), vol. 5144, pp. 93–108. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Djelloul, K., Dao, T., Fruehwirth, T.: Theory of finite or infinite trees revisited. Theory and practice of logic programming (TPLP) 8(4), 431–489 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Djelloul, K.: Decomposable theories. Theory and practice of logic programming (TPLP) 7(5), 583–632 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Djelloul, K., Dao, T.: Extension into trees of first-order theories. In: Calmet, J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120, pp. 53–67. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Djelloul, K.: About the combination of trees and rational numbers in a complete first-order theory. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 106–121. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Fruehwirth, T., Abdennadher, S.: Essentials of Constraint Programming. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  11. Maher, M.: Complete Axiomatizations of the Algebras of Finite, Rational and Infinite Trees. In: Proc. of LICS 1988 Annual Symposium on Logic in Computer Science, pp. 348–357 (1988)

    Google Scholar 

  12. Oppen, D.: A \(2^{2^{2^n}}\) Upper Bound on the Complexity of Presburger Arithmetic. Journal of Comput. Syst. Sci. 16(3), 323–332 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Presburger, M.: Uber die Vollstandigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes Rendus du I congrs de Mathematiciens des Pays Slaves, Warszawa, pp. 92–101 (1929)

    Google Scholar 

  14. Rybina, T., Voronkov, A.: A decision procedure for term algebras with queues. ACM transaction on computational logic 2(2), 155–181 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Satisfiability Modulo Theories (SMT) web page, http://combination.cs.uiowa.edu/smtlib/

  16. Spivey, J.: A Categorial Approch to the Theory of Lists. In: van de Snepscheut, J.L.A. (ed.) MPC 1989. LNCS, vol. 375, pp. 399–408. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  17. Vorobyov, S.: An improved lower bound for the elementary theories of trees. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 275–287. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Djelloul, K. (2009). An Efficient Decision Procedure for Functional Decomposable Theories Based on Dual Constraints. In: Oddi, A., Fages, F., Rossi, F. (eds) Recent Advances in Constraints. CSCLP 2008. Lecture Notes in Computer Science(), vol 5655. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03251-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03251-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03250-9

  • Online ISBN: 978-3-642-03251-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics