Skip to main content

Microbial 1,3-Propanediol, Its Copolymerization with Terephthalate, and Applications

  • Chapter
  • First Online:
Plastics from Bacteria

Part of the book series: Microbiology Monographs ((MICROMONO,volume 14))

Abstract

Poly(trimethylene terephthalate) (PTT) fibers, as a new type of polyester, are characterized by much better resilience and stress/recovery properties than poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT). PPT chains are much more angularly structured than PET and PBT chains and such chains can be stretched by up to 15% with a reversible recovery (Ward et al. 1976).These properties make PTT highly suitable for uses in fiber, carpet, textile, film, and engineering thermoplastics applications. 1,3-Propanediol (PDO), as one of the polyester raw materials for PTT, has also attracted interest.

In the 1990s three technical processes for the production of PDO were developed. The first process used acrolein, and was developed by Degussa-Hüls; this technology was sold to DuPont in 1997. The second was developed by Shell with ethylene oxide as the substrate. These two processes are all classic chemical processes. Recently, the biological process of PDO production with glycerol or glucose as raw materials in one or two steps has been considered as a competitor to the traditional petrochemical routes. It has advantages such as mild reaction conditions, good selectivity of product, environmental friendliness, and use of a renewable feedstock. With the development of biotechnology, especially gene manipulation technology, microbial PDO has prospects for the production of PTT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arntz D, Haas T, Muller A, Wiegand N (1991) Kinetische untersuchung zur hydratisierung von acrolein. Chem Ing Tech 63:733–735

    Article  CAS  Google Scholar 

  • Abbad Andaloussi S, Manginot Durr C, Amine J, Petitdemange E, Petitdemange H (1995) Isolation and characterization of Clostridium butyricum DSM 5431 mutants with increased resistance to PDO and altered production of acids. Appl Environ Microbiol 61:4413–4417

    CAS  PubMed  Google Scholar 

  • Abbad Andaloussi S, Guedon E, Spiesser E (1996) Glycerol dehydratase activity: the limiting step for PDO production by Clostridium butyricum. Lett Appl Microbiol 22:311–314

    Article  CAS  Google Scholar 

  • Adkesson DM, Alsop AW, Ames TT, Chu LA, Disney JM, Dravis BC, Fitzgibbon P, Gaddy JM, Gallagher FG, Lehnhardt WF, Lievense JC, Luyben ML, Seapan M, Trotter RE, Wenndt GM, Yu EK (2005) Purification of biologically-produced 1,3-propanediol. US Patent 20,050,069,997

    Google Scholar 

  • Ahrens K, Menzel K, Zeng AP (1998) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: Ш Enzymes and fluxes of glycerol dissimilation and PDO formation. Biotechnol Bioeng 59:544–552

    Article  CAS  PubMed  Google Scholar 

  • Ames TT (2002) Process for the isolation of PDO from fermentation broth. US Patent 6,361,983 B1

    Google Scholar 

  • Barbirato F, Camarasa-Claret C, Grivet JP, Bories A (1995) Glycerol fermentation by a new PDO producing microorganism: Enterobacter agglomerans. Appl Microbiol Biotechnol 43:786–793

    Article  CAS  Google Scholar 

  • Barbirato F, Himmi HE, Conte T, Bories A (1998) PDO production by fermentation: an interesting way to valorize glycerin from the ester and ethanol industries. Ind Crops Prod 7:281–289

    Article  CAS  Google Scholar 

  • Biebl H, Marten S (1995) Fermentation of glycerol to 1,3-propanediol: use of cosubstrates. Appl Microbiol Biotechnol 44:15–19

    Article  CAS  Google Scholar 

  • Biebl H, Menzel K, Zeng AP (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297

    Article  CAS  PubMed  Google Scholar 

  • Boenigk R, Bowien S, Gottschalk G (1993) Fermentation of glycerol to PDO in continuous cultures of Citrobacter freundii. Appl Microbiol Biotechnol 38:453–457

    Article  CAS  Google Scholar 

  • Cameron DC, Altaras NE, Hoffman ML (1998) Metabolic engineering of propanediol pathways. Biotechnol Progr 14(116):125

    Google Scholar 

  • Carr PL, Jakeways R, Klein JL, Ward IM (1997) Tensile drawing, morphology, and mechanical properties of poly(butylene terephthalate). J Polym Sci Part B Polym Phys 35:2465–2481

    Article  CAS  Google Scholar 

  • Chen X, Xiu ZL, Wang JF, Zhang DJ, Xu P (2003) Stoichiometric analysis and experimental investigation of glycerol bioconversion to PDO by Klebsiella pneumoniae under microaerobic conditions. Enzyme Microb Technol 33:386–394

    Article  CAS  Google Scholar 

  • Cheng KK, Liu DH, Sun Y, Liu WB (2004) PDO production by Klebsiella pneumoniae under different aeration strategies. Biotechnol Lett 26:911–915

    Article  CAS  PubMed  Google Scholar 

  • Cho M-H, Joen SI, Pyo S-H, Mun S, Kim J-H (2006) A novel separation and purification process for 1,3-propanediol. Process Biochem 41(3):739–744

    Article  CAS  Google Scholar 

  • Daniel R, Gottschalk G (1992) Growth temperature-dependent activity of glycerol dehydratase in Escherichia coli expressing the Citrobacter freundii regulon. FEMS Microbiol Lett 100:281–286

    CAS  Google Scholar 

  • Daubert TE, Danner RP (1989) Physical and thermodynamic properties of pure chemicals: data Compilation. Taylor & Francis, Washington

    Google Scholar 

  • Dupeuble JC (2001) Technologies for the PBT, PTT and PET supply chain. Chem Fibers Int 51(1):43–44

    CAS  Google Scholar 

  • Forage RG, Lin ECC (1982) dha systems mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. J Bacteriol 151:591–599

    CAS  PubMed  Google Scholar 

  • Forsberg CW (1987) Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species. Appl Environ Microbiol 53:639–643

    CAS  PubMed  Google Scholar 

  • Gong Y, Tong Y, Wang XL, Liu DH (2004) The possibility of the desalination of actual PDO fermentation broth by electrodialysis. Desalination 161:169–178

    Article  CAS  Google Scholar 

  • Günzel B, Yonsel S, Deckwer WD (1991) Fermentative production of PDO from glycerol by Clostridium butyricum up to a scale of 2m3. Appl Microbiol Biotechnol 36(289):295

    Google Scholar 

  • Liu HJ, Zhang DJ, Xu YH, Mu Y, Sun YQ, Xiu ZL (2007) Microbial production of PDO from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale. Biotechnol Lett 29:1281–1285

    Article  CAS  PubMed  Google Scholar 

  • Hao J, Liu HJ, Liu DH (2005) Novel route of reactive extraction to recover PDO from a dilute aqueous solution. Ind Eng Chem Res 44:4380–4385

    Article  CAS  Google Scholar 

  • Hao J, Xu F, Liu H, Liu DH (2006) Downstream processing of 1,3-propanediol fermentation broth. J Chem Technol Biotechnol 81:102–108

    Article  CAS  Google Scholar 

  • Haynie SL, Wagner LW (1996) Converting L-sorbose to 2-keto-L-gulonic acid by fermentation|from carbon substrates using mixed culture of glycerol-producing and diol-producing organisms. E I du Pont de Nemours & Co WO 9635799-A

    Google Scholar 

  • Hu JL, Lu J, Zhu Y (2008) New developments in elastic fibers. Polym Rev 48(2):275–301

    Article  CAS  Google Scholar 

  • Huang H, Gong CS, Tsao GT (2002) Production of PDO by Klebsiella pneumonia. Appl Microbiol Biotechnol 99:687–698

    Google Scholar 

  • Kurian JV (2005) A new polymer platform for the future—Sorona from corn derived 1,3-propanediol. J Polym Environ 13(2):159–167

    Article  CAS  Google Scholar 

  • Kathiervelu S (2002) Polytrimethylene terephthalate (PTT) fibres. Synth Fibres 31(4):11–12

    Google Scholar 

  • Koch JP, Hayashi S, Lin ECC (1964) The control of the dissimilation of glycerol and L-a-glycerolphosphate in Escherichia coli. J Biol Chem 239:3106–3108

    CAS  PubMed  Google Scholar 

  • Laffend LA, Nagarajan V, Nakamura CE (1997) Bioconversion of a fermentable carbon source to PDO by a single microorganism. US Patent 5,686,276

    Google Scholar 

  • Malaoui H, Marczak R (2001) Influence of glucose on glycerol metabolism by wild-type and mutant strains of Clostridium butyricum E5 grown in chemostat culture. Appl Microbiol Biotechnol 55:226–233

    Article  CAS  PubMed  Google Scholar 

  • Malinowski JJ (1999) Evaluation of liquid extraction potentials for downstream separation of 1,3-propanediol. Biotechnol Tech 13:127–130

    Article  CAS  Google Scholar 

  • Malinowski JJ (2000) Reactive extraction for downstream separation of 1,3-propanediol. Biotechnol Progr 16:76–79

    Article  CAS  Google Scholar 

  • Malshe VC, Mandlecha MVK (2000) Production of butane 1,3-diol, propane 1,3-diol and other diols and polyols. Patent WO/2000/056688

    Google Scholar 

  • Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of PDO from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microbiol Technol 20(82):86

    Google Scholar 

  • Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Ruiz-Sanchez P, Pariset B, Blanchard F, Fick M (2000) High production of PDO from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77:191–208

    Article  CAS  PubMed  Google Scholar 

  • Roturier JM, Fouache C, Berghmans E (2002) Process for the purification of PDO from a fermentation medium. US Patent 6,428,992

    Google Scholar 

  • Ruch FE, Lin ECC (1975) Independent constitutive expression of the aerobic and anaerobic pathways of glycerol catabolism in Klebsiella aerogenes. J Bacterol 124:348–362

    CAS  Google Scholar 

  • Sanz MT, Blanco B, Beltran S, Cabezas JI (2001) Vapor liquid equilibria of binary and ternary systems with water, 1,3-propanediol, and glycerol. J Chem Eng Data 46:635–639

    Article  Google Scholar 

  • Schutz H, Radler F (1984) Anaerobic reduction of glycerol to PDO by Lactobacillus brevis and Lactobacillus buchneri. Syst Appl Microbiol 5:169–178

    Google Scholar 

  • Seyfried M, Daniel R, Gottschalk G (1996) Cloning, sequencing and overexpression of the genes encoding Coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. J Bacteriol 178:5793–5796

    CAS  PubMed  Google Scholar 

  • Slaugh LH, Powell, JB, Forschner TC, Semple TC, Weider PR (1995) Process for preparing 1,3-propanediol. US Patent 5,463,346

    Google Scholar 

  • Slaugh LH, Weider PR, Powell, JB (2001) Process for preparing alkanediols. US Patent 6,180,838

    Google Scholar 

  • Sprenger GA, Hammer GA, Johnson EA, Lin ECC (1989) Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae. J Gen Microbiol 135:1255–1262

    CAS  PubMed  Google Scholar 

  • Tobimatsu T, Azuma M, Matsubara H, Tskatori H, Niida T, Nishimoto K, Satoh H, Hayashi R, Toraya T (1996) Cloning, sequencing, and high level expression of the genes encoding adenosylcobalamin-dependent glycerol-dehydratase of Klebsiella pneumoniae. J Biol Chem 271:22352–22357

    Article  CAS  PubMed  Google Scholar 

  • Tong IT, Liao HH, Cameron DC (1991) PDO production by Escherichia coli expresing genes from the Klebsiella pneumoniae dha regulon. Appl Environ Microbiol 57:3541–3546

    CAS  PubMed  Google Scholar 

  • Wang JF, Xiu ZL, Liu HJ, Fan SD (2001) Study on microaerobic conversion of glycerin to PDO by Klebsiella pneumoniae. Mod Chem Ind 21(5):28–31

    Google Scholar 

  • Wang K, Martin CH, Scott JD (2003) Conversion of glycerol to PDO via selective dehydroxylation. Ind Eng Chem Res 42:2813–2923

    Google Scholar 

  • Ward IM, Wilding MA, Brody H (1976) Mechanical-Properties and structure of poly(meta-methylene terephthalate) Fibers. J. Poly. Sci., Pol. Phy. 14:263–274

    Article  CAS  Google Scholar 

  • Wilkins AE, Lowe DJ (2004) Product removal process for use in a biofermentation system. US Patent 6,812,000

    Google Scholar 

  • Xu YZ, Liu HJ, Du W, Sun Y, Ou XJ, Liu DH (2009) Integrated production for biodiesel and 1,3-propanediol with lipase-catalyzed transesterification and fermentation. Biotechnol Lett 31(9):1335–1341

    Article  CAS  PubMed  Google Scholar 

  • Yonenaga A (2000) PTT fibre—a new textile mass product. Int Text Bull 46(5):35–36

    Google Scholar 

  • Yuan GZ, Tian J, Xu LG, Tang P, Cui DB, Xu GW (2006) Fermentative production of PDO from glycerol by Aspergillus. Food Ferment Ind 32(1):49–52

    CAS  Google Scholar 

  • Zeng AP, Bieb H (2002) Bulk chemicals from biotechnology: the case of PDO production and the new trends. Adv Biochem Eng Biotechnol 74:239–259

    CAS  PubMed  Google Scholar 

  • Zeng AP, Ross A, Biebl H, Tag C, Gunzel B, Deckw WD (1994) Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol Bioeng 44:902–911

    Article  CAS  PubMed  Google Scholar 

  • Zheng ZM, Cheng KK, Hu QL, Liu HJ, Guo NN, Liu DH (2008) Effect of culture conditions on 3-hydroxypropionaldehyde detoxification in PDO fermentation by Klebsiella pneumoniae. Biochem Eng J 39:305–310

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehua Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, H., Ou, X., Zhou, S., Liu, D. (2010). Microbial 1,3-Propanediol, Its Copolymerization with Terephthalate, and Applications. In: Chen, GQ. (eds) Plastics from Bacteria. Microbiology Monographs, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03287-5_16

Download citation

Publish with us

Policies and ethics