Skip to main content

Private Communication using Continuous Variable Signal

  • Chapter
Quantum Private Communication
  • 330 Accesses

Abstract

This chapter introduces how to implement the quantum private communication using continuous variable signals. Key components for the private communication system including continuous variable signal sources, quantum modulation, quantum signal transmission and detection are described. Then, typical ways for protecting confidentiality and authentication with the coherent state and squeezed state are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glauber R J (1963) Coherent and incoherent states of the radiation field. Physical Review, 131(6): 2766

    Article  MathSciNet  Google Scholar 

  2. Walls D F, Milburn G J (1995) Quantum optics. Springer, New York

    Google Scholar 

  3. Gazeau J P (2009) Coherent states in quantum physics. Wiley, New York

    Google Scholar 

  4. Slusher R E, Hollberg L W, Mertz J C, et al (1985) Observation of squeezed states generated by four-wave mixing in an optical cavity. Physical Review Letters, 55(22): 2409–2412

    Article  Google Scholar 

  5. Keller G, D’Auria V, Treps N, et al (2002) Experimental demonstration of frequency-degenerate bright EPR beams with a self-phase-locked OPO. Optics Express, 16(13): 9351–9356

    Article  Google Scholar 

  6. Rosenbluh M, Shelby R M (1991) Squeezed optical solitons. Physical Review Letter, 66: 153–156

    Article  Google Scholar 

  7. Shannon C E (1948) A mathematical theory of communication. The Bell system Tech Journal, 27: 379–423; 623-656

    MathSciNet  MATH  Google Scholar 

  8. Takesue H, Nam S W, Zhang Q, Hadfield R H, et al (2007) Quantum key distribution over a 40dB channel loss using superconducting single photon detectors. Nature Photonics, 1: 343–348

    Article  Google Scholar 

  9. Hertz H (1887) Ueber einen einfluss des ultravioletten Lichtes auf die electrische entladung. Annalen der Physik, 267(8): 983–1000

    Article  Google Scholar 

  10. Einstein A (1905) Uber einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt. Annalen der Physik, 322(6): 132–148

    Article  Google Scholar 

  11. Agrawal G P (2002) Fiber-optic communications systems, 3rd edn. Wiley, New York

    Book  Google Scholar 

  12. Braunstein S L (1990) Homodyne statistics. Physical Review A, 42: 474–481

    Article  Google Scholar 

  13. Ou Z Y, Kimble H J (1995) Probability distribution of photoelectric currents in photodetection processes and its connection to the measurement of a quantum state. Physical Review A, 52: 3126–3146

    Article  Google Scholar 

  14. Vogel W, Grabow J (1993) Statistics of difference events in homodyne detection. Physical Review A, 47: 4227–4235

    Article  Google Scholar 

  15. Lu Y, Zeng G H, Yi Z (2008) Quantum homodyne detection based on polarization diversity technique. Chinese Physics Letter, 25(6): 1950–1953

    Article  Google Scholar 

  16. Grosshans F, Grangier P (2002) Continuous variable quantum cryptography using coherent states. ArXiv, 0109084

    Google Scholar 

  17. Grosshans F, Assche G V, Wenger J, et al (2007) Quantum key distribution using gaussian-modulated coherent states. Nature, 421: 238–241 (2003)

    Article  Google Scholar 

  18. Takuya H, Yamanaka H, Ashikaga M, et al (2003) Quantum cryptography using pulsed homodyne detection. Physical Riview A, 68: 042331

    Article  Google Scholar 

  19. Takuya H, Shimoguchia A, Shirasakia K, et al (2006) Practical implementation of continuous-variable quantum key distribution. Proceedings of SPIE, 2006: 6244

    Google Scholar 

  20. Thomas S, Alton D J, Assad S M, et al (2007) Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise. Physical Review A, 76: 030303

    Article  Google Scholar 

  21. Korolkova N, Leuchs G, Loudon R, et al (2002) Polarization squeezing and continuous-variable polarization entanglement. Physical Review A, 65: 052306

    Article  Google Scholar 

  22. Jackson J D (1999) Classical Electrodynamics, 3rd edn. Wiley, New York

    Google Scholar 

  23. Jauch J M, Rohrlich F (1959) The theory of photons and electrons. Addison-Wesley, London

    Google Scholar 

  24. Agarwal G S, Chaturvedi S (2003) Scheme to measure quantum Stokes parameters and their fluctuations and correlations. Journal of Modern Optics, 50: 711–716

    MathSciNet  Google Scholar 

  25. Lorenz t, Korolkova N, Leuchs G (2004) Continuous-variable quantum key distribution using polarization encoding and post selection. Applied physic B, 79: 273–277

    Google Scholar 

  26. Elser D, Bartley T, Heim B, et al (2009) Feasibility of free space quantum key distribution with coherent polarization states. New Journal of Physics, 11: 045014

    Article  Google Scholar 

  27. Borelli L F M, Vidiella-Barranco A (2006) Quantum key distribution using bright polarized coherent states. International Journal of Modern Physics B, 20: 1287

    Article  MathSciNet  Google Scholar 

  28. Assche G V, Cardinal J, Cerf N J (2004) Reconciliation of a quantum-distributed gaussian key. IEEE Transactions on Informtion Theory, 50: 394

    Article  Google Scholar 

  29. Cerf N J, Ipe A, Rottenberg X (2000) Cloning of continuous quantum variables. Physical Review Letter, 85: 1754–1757

    Article  Google Scholar 

  30. Cerf N J, Iblisdir S (2000) Optimal N-to-M cloning of conjugate quantum variables. Physical Review A, 62: 040301

    Article  MathSciNet  Google Scholar 

  31. Fuchs C A, Gisin N, Griffiths R B, et al (1997) Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strateg. Physical Review A, 56: 1163

    MathSciNet  Google Scholar 

  32. Lodewyck J, Debuisschert T, Brouri R T, et al (2005) Controlling excess noise in fiber-optics continuous-variable quantum key distribution. Physical Review A, 72: 050303

    Article  Google Scholar 

  33. Lodewyck J, Bloch M, Patron R G, et al (2007) Quantum key distribution over 25 km with an all-fiber continuous-variable system. Physical Review A, 76: 042305

    Article  Google Scholar 

  34. He G, Zhu J, Zeng G H (2006) Quantum secure communication using continuous variable EPR correlations. Physical Review A, 73: 012314

    Article  Google Scholar 

  35. Schneier B (1994) Applied Cryptography: protocols, algorithms, and source code in C. Wiley, New York

    Google Scholar 

  36. Barbosa G A, Corndorf E, Kumar P, et al (2003) Secure communication using mesoscopic coherent states. Physical Review Letter, 90: 227901

    Article  Google Scholar 

  37. Corndorf E, Barbosa G, Liang C, et al (2003) High-speed data encryption over 25 km of fiber by two-mode coherent-state quantum cryptography. Optics Letters, 28(21): 2040–2042

    Article  Google Scholar 

  38. Corndorf E, Kanter G S, Liang C, et al (2004) Data encryption over an inline-amplified 200 km long WDM line using coherent-state quantum cryptography. Proceedings of the SPIE, 5436: 12–20

    Article  Google Scholar 

  39. Yuen H P (2004) KCQ: A new approach to quantum cryptography I. General principles and key generation, arXiv: 0311061

    Google Scholar 

  40. Nishioka T, Hasegawaa T, Ishizukaa H, et al (2005) How much security does Y-00 protocol provide us? Physics Letters A, 327(1): 28–32

    Article  Google Scholar 

  41. Yuen H P, Kumar P, Corndorf E, et al (2005) Comment on: “How much security does Y-00 protocol provide us?” Physics Letters A, 346: 1–6

    Article  Google Scholar 

  42. Nishioka T, Hasegawaa T, Ishizukaa H, et al (2005) Reply to: “Comment on: “How much security does Y-00 protocol provide us?””. Physics Letters A, 346: 7–16

    Article  Google Scholar 

  43. Lo H K, Ko T M (2005) Some attacks on quantum-based cryptographic protocols. Quantum Information and Computation, 5(1): 40–47

    MathSciNet  MATH  Google Scholar 

  44. Yuen H P, Nair R, Corndorf E, et al (2005) On the security of αη: response to’ some attacks on quantum-based cryptographic protocols’. Quantum Information and Computation, 6(7): 561–582.

    MathSciNet  Google Scholar 

  45. Yuan Z L, Shields A J (2005) Comment on “secure communication using mesoscopic coherent states”. Physical Review Letter, 94: 048901

    Article  Google Scholar 

  46. Yuen H, Corndorf E, Barbosa G, et al (2005) Reply: “Comment on “Secure Communication using Mesoscopic Coherent States””. Physical Review Letter, 94: 048902

    Article  Google Scholar 

  47. He G Q, Zeng G H (2006) A secure identification system using coherent states, Chinese Physics, 15(2): 371–374

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Private Communication using Continuous Variable Signal. In: Quantum Private Communication. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03296-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03296-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03295-0

  • Online ISBN: 978-3-642-03296-7

Publish with us

Policies and ethics